Precast Bent System for Use in High Seismic Regions

Lee Marsh, PE
Principal
BergerABAM, Inc.

8th US – Taiwan Bridge Engineering Workshop

Pittsburgh, Pennsylvania USA

June 13 and 14, 2012

Presentation Overview

- Introduction and Concept
- Connection Validation Testing
 - Column-to-Cap Beam
 - Column-to-Spread Footing
 - Column-to-Drilled Shaft
- Demonstration Project
 - Design, Construction and Lessons Learned
- Deployment Aids

Highways for LIFE Project

- Funded by FHWA's Highways for LIFE Technology Partnerships Program
- Project Team:
 - BergerABAM Grant Awardee
 - University of Washington
 - Washington State Department of Transportation
 - Concrete Technology Corporation
 - TriState Construction
- More Information @ www.fhwa.dot.gov/hfl

Background

- Need to Accelerate On-Site Bridge Construction
- Use Precast Concrete Components
 - Precast Superstructures Used Routinely
 - Precast Pier System Is Goal
- Connections are Critical
- Must Be:
 - Constructible
 - Seismically Resistant

Large Bar Connection - Conclusions

- PC cap beam saves significant time on site.
- Generous tolerances make erection easy.
- Large bars can easily be developed.
- Seismic performance like cast-in-place.

Spread Footing - Conclusions

- Easy to build
- Vertical strength easily sufficient
- For h_f/D_{col} = 1.1, seismic performance like CIP (failure in column)
- Superior force flow in connection

Drilled Shaft - Conclusions

- Easy to build
- For "100%" shaft spiral, seismic failure in column, performance as cip.
- For "50%" shaft spiral, failure in transition.

Design Aids - Specifications

- Design Specifications
 - Formatted in AASHTO Guide Spec Language
 - Appendix format with all details in one place
 - Address design with HfL bent details
 - ERS & ERE, displacement capacity, development, joint design, unique load paths, etc
- Construction Specifications
 - Material controls
 - Tolerance control
 - Recommendations for contract control

Schedule

- Demonstration project complete fall 2011
- Laboratory work completed fall 2011
- Design Examples and Aids summer 2012
- Final reports summer 2012

