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Reforming of Ethanol to Produce Hydrogen over PtRu/ZrO, Catalyst
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Abstract

The aim of this study is focused on the design of ethanol reforming catalysts to
produce hydrogen at low-temperature with higher ethanol conversion (Xgwon), hydrogen
yield (Y2) and lower CO distribution. Highly dispersed PtRu/ZrO, catalyst was prepared
by impregnation method. Evaluation of catalytic activities and products distribution
toward ethanol reforming reactions were tested in a fixed bed reactor. Three processes of
ethanol reforming were compared: steam reforming of ethanol (SRE), partial oxidation of
ethanol (POE) and oxidative steam reforming of ethanol (OSRE). According to the
distribution of products can be concluded that the optimal reaction temperatures (Tgr) for
POE, SRE and OSRE were 310 — 350 °C, 380 — 460 °C and 300 — 360 °C, respectively.
Although the Tr of POE was lower, the hydrogen yield (Y42) was lower (2.65 under 330
°C) and the CO distribution was higher (16% under 330 °C) than other reforming reactions.
The highest Yy, (5.7 under 460 °C) and lower CO distribution (4% under 460 °C) was
obtained through the SRE, while, the reaction required higher temperature to achieve.

Keywords: Reforming of ethanol, Zirconia, Hydrogen production.
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Background

Hydrogen is a multi-function material that used widely as a feedstock in the petrol
(hydrotreatment and hydrocracking process), chemical (ammonia and methanol synthesis),
food processing (oil and fat hydrogenation), steel and electronics manufacture [1]. But
hydrogen is not produced as an energy carrier or as a fuel for electric power generator by
the present industry. Using hydrogen as an energy carrier can support sustainable global
economic growth as well as reduce air pollution and greenhouse effect. However, there are
several technical handicaps that have to be conquered to produce and transfer the great
amounts of hydrogen that will be required in a hydrogen economy. Hydrogen can be
produced from ethanol through different reforming processes, i.e., steam reforming of
ethanol (SRE), partial oxidation of ethanol (POE) and oxidative steam reforming of
ethanol (OSRE). The OSRE operation is the combined steam-reforming and
partial-oxidation operation. Moreover, lowering the energy demand for the reforming
operation, the operation has the main advantage of reducing the coke-formation rate.
Based on thermodynamic analysis of hydrogen production from ethanol by catalytic
processes, the OSRE process has many advantages in terms of heat management and
reforming efficiency 0. Besides choosing a single active component (noble or non-noble
metals) as the reforming catalyst, multi-component catalysts have been reported in various
catalytic reactions. In particular, the catalytic ability of PtRu catalyst for hydrogen
production in reforming reaction, a PtRu/ZrO, was an excellent catalyst for low

temperature OSRE 0.

Effect of support on the OSRE reaction

Bimetallic PtRu catalysts were prepared by method of impregnation by using H,PtClg
and RuCl; as precursors. Six supports (reducible oxides: ZrO,, CeO,, Co30, and

irreducible oxides: ZnO, Al,O3, NiO) are chosen to prepare bimetallic catalysts. The
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optimized molar ratios of O,/EtOH and H,O/EtOH feeds are 0.44 and 4.9, respectively.
Under this reforming condition, the six bimetallic PtRu catalysts can completely convert
the ethanol at low temperatures for reducible oxides (CeO,, ZrO, ~ 280 °C, Co304 > 300
°C) supported catalysts with only C; species (CH;, CO and CO,). While, the ethanol at
higher temperatures for irreducible oxides (Al,O3 > 350 °C, NiO > 400 °C, ZnO > 450 °C)
supported catalysts with C; species and a trace amount of C,H,; and CH3;CHO formation.
Although the catalytic performance of PtRu/Co3O,4 catalyst is excellent, longer reaction
periods produce a progressive deactivation of the activity by the carbon deposition. The
hydrogen yield (Yy2) is high for PtRu/NiO catalyst, while the reaction temperature (Tg)
approaches high temperature that initiates the decomposition of ethanol to increase the Sco
as the Tgr above 500 °C. Both PtRu/Al,O3 and PtRu/ZnO catalysts possess lower Yy, and

higher Sco. Among these catalysts, both PtRu/ZrO, and PtRu/CeO, are excellent OSRE

catalysts to produce hydrogen at low temperature. The maximum Yy, is 4.4 and the CO
distribution is 3.3 mol % under 340 °C for PtRu/ZrO; catalyst; the Yy, is 3.5 and the CO

distribution is 3.0 mol % for PtRu/CeO; catalyst, respectively.

Reforming of ethanol to produce hydrogen over PtRu/ZrO, catalyst

The aim of this study is focused on the design of ethanol reforming catalysts to
produce hydrogen at low-temperature with higher ethanol conversion (Xgwon), YH2 and
lower CO distribution. Three processes of ethanol reforming were compared: SRE, POE
and OSRE. The SRE reaction requires higher temperature to achieve complete conversion
of ethanol than both POE and OSRE reactions. According to the distribution of products
can be concluded that the optimal reaction temperatures for POE, SRE and OSRE were
310 — 350 °C, 380 — 460 °C and 300 — 360 °C, respectively. The distribution of CO is
minor for both SRE and OSRE reactions (< 4% for both reactions). This demonstrates that

the water gas shift (WGS) reaction is an important side-reaction in the reforming of

11



ethanol to produce H, and CO,. Although the Tg of POE was lower, the hydrogen yield
(Yn2) was lower (2.65 under 330 °C) and the CO distribution was higher (16% under 330
°C) than other reforming reactions. The highest Yy, (5.7 under 460 °C) and lower CO
distribution (4% under 460 °C) was obtained through the SRE, while, the reaction required

higher temperature to achieve.
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