氣渦輪機葉片鑄造及殘留

應力量測技術之研究

服務機關:台灣電力公司 姓名職稱:李日輝 機械研究專員 派赴國家:芬蘭、義大利 出國日期:100年 10月 09日至10月22日 報告日期:100年12月21日

出國報告審核表

一、 各機關可依需要自行增列審核項目內容, 出國報告審核完畢本表請自行保存。

二、 審核作業應儘速完成,以不影響出國人員上傳出國報告至「政府出版資料回應網公務出國報告 專區」為原則。

行政院及所屬各機關出國報告提要

出國報告名稱:氣渦輪機葉片鑄造及殘留應力量測技術之研究

頁數 49 含附件:□是☑否

出國計畫主辦機關/聯絡人/電話:

出國人員姓名/服務機關/單位/職稱/電話:

李日輝/台灣電力公司/綜合研究所/機械研究專員/(02)8078-2217

出國類別:□1考察□2進修□3研究■4實習□5其他

出國期間:100年10月09日至10月22日 出國地區:芬蘭、義大利 報告日期:100年12月21日

分類號/目

關鍵詞:氣渦輪機,精密鑄造,熱段組件,動葉片,靜葉片,殘留應力

內容摘要:(二百至三百字)

本公司有超過60部之氣渦輪機組,其熱段組件在高達1200℃的溫度下運轉,按原廠建 議有些組件在運轉5萬小時甚至更短的時數下須更新,少部分可達10萬小時進行更新工作, 因此公司以往需花費數十億的維護費用向原廠購置熱段組件備品。

為建立自有維修技術,本所陸續完成葉片及熱傳導件再生技術開發,近年也著手部分空 壓段葉片自製工作,為擴大自製範圍至氣機段動、靜葉片,減少公司購置熱段組件備品之龐 大支出,有必要藉由研習以吸收國外之精密鑄造技術及經驗。另外,藉由研習國外之X光繞射 分析殘留應力量測技術,可以建立非破壞分析組件殘留應力量測的能力,輔助再生及新製製 程,並應用於機組壽命評估工作。

本研習參訪芬蘭 Stresstech 公司,了解殘留應力量測技術之發展,評估汽機轉子高溫 段以X光繞射分析法測殘留應力之可行性,以期輔助汽機組件壽命評估及轉子校直工作,經評 估以X光繞射分析法輔助汽機壽命評估及轉子校直工作非常可行;參訪義大利 Microfusione Stellite 公司,了解其在氣渦輪機組件精密鑄造之技術及經驗,以提昇本公司之葉片精密鑄 造及製造技術,經評估Microfusione Stellite 公司合作之技術及經驗豐富,合作是可行的。

本文電子檔已傳至出國報告資訊網(http://open.nat.gov.tw/reportwork)

目 錄

出國報告審核表	Ι
出國報告書提要	П
目 錄	Ш
表 目 錄	IV
圖 目 錄	IV
一、出國緣由、行程及主要任務	1
1、1 出國緣由	1
1、2 出國行程及主要任務	2
二、Stresstech 公司研習內容	3
2、1 盲孔法測殘留應力	3
2、2 X 光繞射分析法測殘留應力	7
2、2、1 相關理論	7
2、2、2量測實務	11
2、3 Stresstech 公司其他技術	21
三、Microfusione Stellite 公司研習	27
3、1 精密鑄造流程介紹	27
3、1、1 製作臘模	28
3、1、2 製作陶瓷殼模	32
3、1、3工件澆鑄	34
3、1、3後續處理及檢測	36
3、2 Micrifusione Stellite 公司業務狀況	39

	3、3本公司氣渦輪機氣機段葉片精密鑄造討論	···· 41
四	、心得及建議	···· 46
五	、參考文獻	47

表 目 錄

表1肥粒鐵及沃斯田鐵繞射晶格面及繞射角	25
表2各種鑄造用葉片材料所適合之鑄造凝固程序	42

圖 目 錄

圖	1	盲	孔	去测	殘	留	應	力	裝	置	照	片	••••	••••	•••	• • • •	•••	••••	•••	• • • •	•••	•••	•••	•••	•	5
圖	2	雷	射;	光顯	像	技	術	輔	助	盲	孔	法	测	殘	留	應	力	••••	•••	• • • •	••••	•••	•••	•••	•	6
圖	3	Х	光的	的材	料	繞	射	光	譜	及	繞	射	光	與	品	格.	距	離:	之陽	剥作	糸圖]	•••	••••	•••	9
圖	4	常	見自	的材	料	內	部	原	子:	排	列	方	式	及	品	格	面	的	表元	トブ	了法		•••	••••	•••	10
圖	5	材	料	內部	晶	粒	組	織	與	表	面	及	X	光	λ ;	射	角	出,	射戶	有層	剶侤	民區		••••	•••	10
圖	6	St	res	ste	ch	公	司	之	Xt	re	ess	Ro	obc	ot [.]	設	備	簡	圖	•••	•••	•••	•••	•••	••••	•••	12
圖	7	Х	光	則頭	反	偵	測	器	傾	斜	模	式	••	•••	•••	•••	•••	•••	••••	•••	••••	•••	•••	••••	••	13
圖	8	Х	光	則頭	反	偵	測	器	偏	擺	方	向	與	所	量	測	應	力;	方后	้า	••••	•••	•••	••••	••	16

圖	9 3	3點或連續量測殘留應力之圖例	17
圖	10	以三點彎曲試片驗證 Modified ϕ 法之照片	20
圖	11	高/中壓轉子簡圖及照片	21
圖	12	高/中壓轉子高溫區複製模照片	22
圖	13	雙機械手臂執行大型工件殘留應力量測工作照片	23
圖	14	量測殘留沃斯田鐵測頭、滑軌及偵測器安置情形	25
圖	15	Stresstech 公司 Barkhausen 雜訊偵測情形	26
圖	16	脫蠟精密鑄造流程	29
圖	17	Microfusione Stellite 公司組立蠟樹的情形	30
圖	18	Microfusione Stellite 公司葉片與砂心照片	31
圖	19	Microfusione Stellite 公司沾漿及淋砂情形	33
圖	20	Microfusione Stellite 公司澆鑄情形	35
圖	21	Microfusione Stellite 公司鑄件澆鑄後續工作	37
圖	22	Micrifusione Stellite 公司精密鑄造產品	39
圖	23	西門子公司 V84.2 葉片照片	43
圖	24	三菱公司 M501F 葉片照片	44
圖	25	多晶、方向性凝固及單晶之凝固過程	45

一、出國緣由、行程及主要任務

1、1 出國緣由

公司有超過60部之氣渦輪機組,其熱段組件在高達1200℃的溫度下 運轉,按原廠建議有些組件在運轉5萬小時甚至更短的時數下須更新, 少部分可達10萬小時進行更新工作,因此公司以往需花費數十億的維 護費用向原廠購置熱段組件備品。

為建立自有維修技術,本所陸續完成葉片及熱傳導件再生技術開發,近年也著手部分空壓段葉片自製工作,為擴大自製範圍至氣機段動、靜葉片,減少公司購置熱段組件備品之龐大支出,有必要藉由研習以吸收國外之精密鑄造技術及經驗。另外,藉由研習國外之X光繞射分析殘留應力量測技術,可以建立非破壞分析組件殘留應力量測的能力,輔助再生及新製製程,並應用於機組壽命評估工作。

本研習參訪芬蘭 Stresstech 公司,了解殘留應力量測技術之發 展,並吸收其技術及經驗、評估汽機轉子高溫段以X光繞射分析法測殘 留應力之可行性,以期輔助汽機組件壽命評估及轉子校直工作;參訪 義大利 Microfusione Stellite 公司,了解並學習其在氣渦輪機組件 精密鑄造之技術及經驗,以提昇本公司之葉片精密鑄造及製造技術, 並評估合作之可行性。

1、2出國行程及主要任務

本次出國實習期間為100.10.9~100.10.22,共計14天。10月9日 搭乘華航班機,於10日抵達德國法蘭克福機場旋即轉機前往芬蘭赫爾 辛基市,11日至14日參訪STRESSTECH公司,研習殘留應力量測技術並 了解其輔助汽機組件壽命評估及轉子校直工作的可行性;10月15日自 赫爾辛基市搭乘華航聯營之荷蘭航空班機前往義大利米蘭市,16日及 20日於米蘭市參訪Microfusione Stellite公司,研習氣渦輪機葉片鑄 造技術,了解其在氣渦輪機組件精密鑄造之技術及經驗,並評估與 Microfusione Stellite 公司合作之可行性。10月21日及22日為返程, 返程自米蘭Linate機場搭乘華航聯營之德航班機至法蘭克福機場轉華 航班機返抵台北,詳細行程如下:

10/09~10	往程(台北→法蘭克福→赫爾辛基)
10/11~14	STRESSTECH 公司(赫爾辛基) 研習殘留應力量測技術
10/15	赫爾辛基→米蘭
10/16~20	MICROFUSIONE STELLITE 公司(米蘭) 研習氣渦輪機葉片鑄造
10/21~22	返程(米蘭→法蘭克福→台北)

二、Stresstech 公司研習內容

參訪Stresstech公司主要目的在於研習殘留應力量測技術,工件 常因以下原因導致殘留應力;鑄件或銲接件因為各部位之厚度不均或 凝固過程的相變化而導致殘留應力^(1~3);工件的加工也會導致殘留應 力,例如發電機的轉子扣環殘留應力可以高達降幅強度的10%,甚至 運轉時所受應力高達降幅強度的80%⁽⁴⁾,以上這些殘留應力導致機組 組件更易損壞進而導致嚴重損失,因此對於重要組件量測應力集中部 位的殘留應力很重要。殘留應力量測方式有破壞方式,如切片法,半 破壞方式,如盲孔法,非破壞方式,如X光繞射分析法及中子繞射分析 法⁽¹⁾,這些方法中以盲孔法測殘留應力及X光繞射分析法測殘留應力最 常被使用。茲介紹盲孔法測殘留應力與X光繞射分析法測殘留應力之量 測原理及最新發展以及Stresstech公司之其他技術。

2、1 盲孔法测残留應力

盲孔法量测殘留應力的程序乃是在待測試片上黏貼一片專用的三 辦應變規,在三辦應變規所圍對稱的中心點有一個規劃為即將鑽除的 圓孔,當鑽除該孔位之試片材料時,部分的試片殘留應力將會被釋放, 藉由應變規所量測到的應變值,經過計算就可以得到試片的殘留應力⁽⁵ ^{~7)}。在大多數的情形下,盲孔法所鑽的孔並不影響工件的正常使用, 故此法被歸類為半破壞方式,此法適用於均質性、等向性且具有線彈 性的材料,當試片厚度大於應變規規圓的1.2倍時適合使用本法⁽⁵⁾。 圖1為盲孔法測殘留應力裝置照片^(6,7),圖1(a)為應變規及鑽頭 的照片,在其規圓範圍內有三瓣應變規,一般而言其三瓣應變規之相 對角度有0°、45°、90°及0°、60°、120°兩種,圖中為第一種相對角度 之盲孔法應變規,圖1(b)為鑽孔設備的照片,該設備有三個固定點, 圖中右下角箭頭所指為其中之一,此三個固定點作用在將設備黏貼於 試片上,使同一位置的鑽孔不致移位。

使用盲孔法测试片殘留應力除了有前述的厚度限制,鑽孔孔徑及 孔深亦因試片厚度及應變規而有所限制;另外,孔位偏差也有一定的 限制。以上這些限制目的在於減少實驗誤差,即便如此,鑽頭所導致 的殘留應力仍無可避免,因此有以放電加工鑽孔取代鑽頭或銑刀的嘗 試,並且得到一定的成效⁽⁵⁾。

當選定了應變規的規格且黏貼於試片時,則所量測的範圍受應變 規規圓範圍所限,只能反映該範圍的應力釋放,且最大殘留應力的方 向與所黏貼的應變規方向不一定一致,每一角度的應變值均是經由計 算而來,為此 Stresstech公司使用雷射光顯像技術來量測鑽孔後的應 力變化^(8·9)。圖2(a)為雷射光顯像技術輔助盲孔法測殘留應力之裝置 照片,圖中箭號所指為鑽孔之機構,其下方之位移計用以顯示鑽孔深 度,位於鑽孔機構上方乃是雷射光源及其接收器,接收器將所收得的 訊號由電腦分析,以得到全平面任一角度之應力值。此方式可以改善 鑽孔時孔位偏差損及應變規的顧慮;也可以不受應變規黏貼方向限 制,因而可以得到全平面任一角度之應力值,圖2(b)、(c)即為接收 器所接受到的訊號圖形範例,基本上黑色弧形即表示應力的存在,顏 色愈黑表示應力愈大,經由電腦分析可以得到任一角度之應力值。

1.6 mm

(b)

(a)

圖 1 盲孔法測殘留應力裝置照片^(6,7)(a)應變規及鑽頭(b)鑽 孔設備

圖 2 雷射光顯像技術輔助盲孔法測殘留應力^(8,9) (a)設備照片 (b)、(c) 雷射光顯像技術顯示之殘留應力分布

2、2 X 光繞射分析法測殘留應力

有別於盲孔法之半破壞方式, X光繞射分析法測殘留應力屬於非破 壞方式之一,並且可以量測表面以下1~30μm的殘留應力,運用電解 腐蝕法,可以量測至0.5mm深度材料的殘留應力,相較之下,盲孔法雖 可以量測至1.5mm的深度,對於最重要的試片表面(≦20μm)殘留應 力卻無法量測⁽¹⁾,由於X光繞射分析法測殘留應力為精確且最有效的方 法,因此在先進國家成為品質檢驗的重要一環⁽¹⁺³⁾。對於本公司而言, 許多重要的組件連盲孔法的半破壞方式也不適合使用,因此X光繞射分 析法測殘留應力更顯得重要,Stresstech公司開發的X光繞射分析設 備,功率約為300W便能執行量測工作,且在其發出X光的測頭旁邊所測 得的輻射值便與背景值無異,如果架設於機械手臂前端使用可以得到 0.02mm以下的重複量測位置誤差,因此可以成為功能極強的現場量測 工具並輔助汽機機組壽命評估。

2、2、1相關理論

X光繞射分析法測殘留應力的基本理論,乃是當施以X光照射待測 物時,會在特定的入射角與繞射夾角出現特別強的繞射光譜,此與特 定系列晶格面之間的繞射有關;也就是當X光波長大小與晶格距離符合 特定數學關係時,會出現特別強的繞射光譜,因此當材料受力而在特 定方向伸長或縮短時,經由X光繞射分析之入射光與繞射光夾角所產生 的變化,即反映某些晶格被拉長或縮短,所以X光繞射分析法可以藉此 測定材料之殘留應力^(10,11)。 圖3為典型 X光的材料繞射光譜以及繞射光與晶格距離之關係圖 示,圖3(a)顯示Ka及KB為低角度之可能的繞射光角度,此應為(1,0,0) 面及(1,1,0)面,這兩個繞射角為一般實驗室設備進行低角度繞射時 重要的繞射波鋒,其實材料在高繞射角,例如鋁在139°附近及肥粒鐵 組織的鋼材在156°附近也有適合於量測的繞射光譜^(10,11),並且以這樣 角度的繞射光譜在量測實務上較不受工件形狀及空間的限制。

圖3(b)顯示當材料的晶面晶格距離(d值)與繞射角(2θ)及X 光波長(λ)符合Bragg´s law時,繞射光譜即出現相對的高繞射光譜。 如前所述當材料受力而在特定方向伸長或縮短時,晶格便被依照該方 向拉長或縮短,所以X光繞射分析法可以經由X光繞射角所產生的變 化,進一步根據材料的晶格常數及X光波長去推算晶格常數變化。

材料晶格變化量與所受的應力成正比,乃是建立於材料處在彈性 範圍,亦即符合虎克定律的彈性理論,另外,當材料於某一軸向被拉 伸時,在材料其他兩個軸向會被收縮,因為材料物質不增也不減,因 此材料所受的應力及所產生的應變遵守以下關係:

 $e_{x} = \frac{1}{E} [\sigma_{x} - \nu(\sigma_{y} + \sigma_{x})]$ $e_{y} = \frac{1}{E} [\sigma_{y} - \nu(\sigma_{x} + \sigma_{x})]$ $e_{z} = \frac{1}{E} [\sigma_{x} - \nu(\sigma_{x} + \sigma_{y})]$

E為材料的楊氏系數; v 則為材料的Poisson's Ratio

由楊氏系數、Poisson's Ratio以及材料晶格常數變化便可推算殘 留應力。圖4 為常見的材料原子排列方式及晶格面的表示方法^(10,11), 圖4 (a) 左半為面心立方組織,也就是鋼鐵材料常見的沃斯田鐵組織 晶格(γ),除晶格的八個角落有原子之外,六個面的中心也有6個原 子排列;右半則為體心立方組織,也就是鋼鐵材料常見的肥粒鐵組織 晶格(α),除晶格的八個角落有原子之外,晶格的中心也有1個原子 排列,以上兩種晶格三軸向的晶格距離是相等的,當材料受力使各方 向晶格距離不等或者材料屬於正方結構時,圖4(a)中的a、b、c長度 便不相同,圖4(b)為各種平面的表示方法,當平面垂直於x軸時,以 其法線向量(1,0,0)表示該系列平面,同理當該平面的垂直向量為 (1,1,0)時,便以其法線向量(1,1,0)表示該系列平面^(10,11)。

圖5 為材料內部晶粒組織與表面及X光入射角繞射角關係圖^(10,11), 如圖5 (a)所示,如果有一些晶粒存在與表面平行的晶格面,則其繞 射光的出射角與表面的夾角和入射光與表面的夾角相同,相加等於2 θ,如果相同晶格面的晶粒與表面不平行,則繞射光的角度與晶格面 的夾角和入射光與晶格面的夾角相同,相加仍等於2θ,但對於材料表 面而言,該入射角與出射角便有不同,如圖5 (b)所示,因此對於任 一角度入射於多晶材料內部的X光,其相同晶格指數的繞射光譜,在與 入射光夾相同角度的圓錐平面上均可以測量得到。

圖3 X光的材料繞射光譜及繞射光與晶格距離之關係圖⁽¹⁰⁾ (a) 典型之繞射光譜(b) 繞射光與晶格距離之關係

圖4 常見的材料內部原子排列方式及晶格面的表示方法^(10,11) (a)面心及體心立方堆積方式(b)平面的表示方法

(a)

(b)

圖5 材料內部晶粒組織與表面及X光入射角繞射角關係圖^(10,11)(a) X光入射角與表面平行(b) X光入射角與表面未平行

2、2、2 量測實務

正如圖5所示,材料內部有許多不同晶格方向的晶粒,另外,在現 場組件因形狀及相對空間而使量測受限,因此量測實務上仍有許多待 克服之事。Stresstech 公司設計了Xstress Robot 的X光绕射分析設 備,以提高量測的效率、降低绕射光譜受材料表面狀況及晶粒大小等 因素的干擾,並且提高量測的精確度。圖6為 Stresstech公司之Xtress Robot設備簡圖⁽¹²⁾,圖6(a)顯示Xtress Robot結合了X光绕射分析設 備及小型機械手臂的功能,將微型X光管、導引X光的測頭及一組偵測X 光的精密CCD偵測器架設於機械手臂的前緣,透過機械手臂6軸的靈活 移動及轉動,可以配合工件在各種位置及角度的量測需求,並且可以 在量測中配合量測需要擺動或轉動整組X光測頭與偵測器,使量測工作 不受工件尺寸及空間限制;圖6(b)及(c)顯示該設備裝置有兩個對 稱的偵測器,偵測器在滑軌上可因應量測需要事先調整位置使能偵測 到所需量測角度的绕射光,為了配合量測之空間限制,整組X光測頭、 滑軌及偵測器可以平行或垂直於微型X光管⁽¹²⁾。

圖7為 Xstress Robot 的X光繞射分析設備在量測時,兩種X光測 頭及偵測器傾斜模式,一種為較傳統的方式稱為ω法,如圖7(a)所 示,另一種則為較新的方式稱為Modified ψ法,如圖7(b)所示,茲 先以圖7(a)之上圖為例說明圖中所代表物件,中央之方塊代表待測 工作物,右側較大的方塊代表發射X光之X光管,另一最小的方塊代表 偵測器,因此由圖7(a)之兩個示意圖可以清楚了解兩件事,一是傳 統ω法只用一個偵測器,二是使用ω法量測殘留應力時,X光管、偵測 器以及傾斜方向均在同一平面,由圖7(b)之兩個示意圖也可以清楚 了解兩件事,一是Modified φ法量測殘留應力時使用兩個偵測器,二 是使用Modified φ法量測時,X光管及偵測器所在的平面與傾斜方向 所形成的平面是相垂直的。除了以上的兩種傾斜方向以執行X光繞射分 析之外,整組X光測頭與偵測器尚可以由機械手臂控制以入射光為中心 轉動若干角度,所以藉此兩種方式可以靈活地按照空間的限制測得材 料不同方向的殘留應力⁽¹⁰⁾。

圖 6 Stresstech 公司之 Xtress Robot 設備簡圖⁽¹²⁾(a)設備全貌 (b) 測頭及偵測器

圖7 X光測頭及偵測器傾斜模式⁽¹⁰⁾(a) ω 法(b) Modified ϕ 法

由於材料內部有許多不同晶格方向的晶粒,因此量測上如何得到 正確的晶格距離變化,據以計算殘留應力,而不因晶格方向與試片表 面偏斜而導致誤差呢?以上介紹的 ω 法及Modified ϕ 法均是藉由圖7 中的傾斜來量測,以圖7(a)的 ω 法為例,先以X光測頭與試片平面的 法線平行(即測頭與該法線夾角 $\phi=0^{\circ}$)量測得到繞射角(2 θ),再 將X光測頭傾斜若干角度(ϕ)量測得到新的繞射角(2 θ),,此時 便可由繞射角變化($\Delta \theta$)、sin² ϕ 、E(材料的楊氏系數)、 ν (材 料的Poisson's Ratio)等計算出圖7(a)中試片表面Si方向的殘留應 力(σ)⁽¹⁰⁾,根據X光繞射分析殘留應力基本理論⁽³⁾,此計算式為:

 $\sigma = (E \ast \cot \theta \ast \bigtriangleup \theta) / ((1 + \nu) \ast \sin^2 \phi)$

上述的測試方法及計算式被稱為兩點式的測試⁽³⁾,相同的道理, 圖7(b)的Modified φ法也可以以傾斜角φ=0°及傾斜角φ所得到的 △θ、sin²φ、E、ν等計算出圖7(b)中試片表面S₂方向的殘留應力 (σ)⁽¹⁰⁾,與ω法不同的是,ω法的偵測器位於傾斜所呈弧線的路徑 上,而Modified φ法的偵測器則位於兩側,此正如前面敘述的,任一 角度入射於多晶材料內部的X光,其相同晶格指數的繞射光譜,在與入 射光夾相同角度的圓錐平面上均可以測量得到。

以上兩種方法均可得到所要量測方向的殘留應力,而所量測到的 殘留應力與傾斜方向有關。由圖8(a)的簡圖說明,欲量測的殘留應 力方向如圖中所標示,通常命名為φ方向,此時若以Modified φ法量 測,則X光測頭及偵測器偏擺路徑如圖中箭頭所指;若欲以ω法量測, 則圖中的X光測頭、偵測器須轉動90°,且其偏擺路徑亦須如圖中箭頭 所指⁽¹⁰⁾。實務上Stresstech 公司的Xstress Robot在量測時除了藉傾

-14-

斜而進行兩點式的測試之外,並且可以在測試傾斜角 ϕ 時沿著傾斜方 向擺動 $\pm 6^{\circ}$,以增加量測的精度;另外,藉著機械手臂將整組X光測頭 及偵測器轉動 ϕ 角後進行相同的測試,此時可以測得多種角度之應 力,進一步計算得到平面之最大應力及其方向,效果如同盲孔法的三 辦應變規。圖8(b)說明了整組X光測頭及偵測器轉動、傾斜及擺動所 對應的移動路徑、相關角度標示及所測得的應力方向。X、Y兩軸在平 面上,Z軸則為前述的平面法線,原點為待測點,第一個測試點X光測 頭是沿著Z軸指著原點,第二個測試點X光測頭是沿著(φ , ϕ)方向 指著原點,此時整組測頭及偵測器傾斜及小幅擺動的方向都在Z軸及 (φ , ϕ)方向所成的平面上,此時以兩點式的計算式所得的應力在 (φ , ϕ)方向投影在試片平面的方向,亦即圖中與X軸夾 φ 角之方向。

當測試材料為鋁合金或者材料晶粒較大時,兩點式的測試可能數 據的精確程度較不足,Stresstech 公司比較建議以Xstress Robot進 行多點甚至連續傾斜角的方式測試,亦即於圖8(b)中X光測頭沿著Z 軸方向至(φ , φ)方向多點或連續傾斜施測。圖9(a)及(b)為 φ 角在-21.8°與-40°時之繞射圖譜,圖中標示的位置為 φ =0°時的繞射 角,圖中顯示傾斜角 φ 愈大繞射角2 θ 的偏移愈大,由於使用Xstress Robot設備並使用Modified φ 法,因此A、B兩個偵測器的測試值可以 相互補正,以減少試片表面粗度或材質所造成的誤差。

進一步以所有數據的 $\triangle 2\theta$ (或 $\triangle \theta$)與 $\sin^2 \phi$ 作圖,可以得到線 性關係,如圖9(c)所示^(3,10)。此一直線的斜率與E、 ν 、cot θ 及殘 留應力 σ_{φ} 有關,根據X光繞射分析殘留應力基本理論⁽³⁾,此斜率為:

2 ((1+ ν) * σ_{φ}) / (E*cot θ) ⁽³⁾

圖8 X光測頭及偵測器偏擺方向與所量測應力方向⁽¹⁰⁾(a)簡圖(b)方向 轉動及測頭與偵測器偏擺方向

 $\psi = -40.0$

圖9 多點或連續量測殘留應力之圖例^(3,10)(a) X光測頭傾斜21.8°
 之數據(b) X光測頭傾斜40°之數據(c) △2θ)與 sin²φ
 之線性關係圖

由前述的實務方法可以知道欲計算材料殘留應力,必須先知道材 料的楊氏系數(E)及Poisson's Ratio(ν)等常數,對於無法自文 獻或參考書籍查閱到這些常數的材料,Stresstech 公司乃是以圖10的 三點彎曲裝置實地測試而得到。圖(a)中箭頭所指為水平方向放置的 試片,其兩端被固定,其中央部分因下方的螺栓推動一個錐形物上頂 而受力,試片因此於長度方向受力而於寬度方向不受力,由試片上方 以量規測得變形量,由Xstress Robot可以測得長度方向及寬度方向的 應變,由這些數據便可以計算出所需要的常數值。

為了更直接說明上述Modified ψ法的傾斜方式可以同樣得到與 傳統ω法相同的測試結果,Stresstech 公司以前述的三點彎曲裝置實 地測試,將螺栓往上旋轉使錐形物向上頂,使試片於長度方向受力, 於寬度方向不受力,分別以ω法及Modified ψ法量測試片在此兩個方 向的受力,結果以ω法測得長度方向的應力及寬度方向的應力分別為 379.7±10.9Mpa、40.5±33.9Mpa,以Modified ψ法測得的應力值分別 為340.6±14.6Mpa、-23.7±24.0Mpa,證實兩者所測得的長度方向應力 確實非常相近,而寬度方向的應力基本上接近於0。

汽機高/中壓轉子為重要組件,了解其劣化情形及應力狀況為重要 之工作,除了可以輔助機組壽命評估工作,轉子校直後也可以藉以了 解殘留應力當作工作結果的指標。圖11(a)為高/中壓轉子簡圖,其 中以高溫段所標示的5個位置較容易應力集中,圖11(b)為轉子高溫 段照片,顯示個別區域的實際樣貌,為了解此5個位置在量測上是否可 行,因此製作複製模提供Stresstech 公司工程師,以便了解量測是否 可行,複製模如圖12所示,Stresstech 公司工程師表示位置2須使用 細小的X光測頭,但欲提高精度須經由測試得到較佳的測試方式,位置 5量測時機械手臂動作可能受限,但基本上均可行,至於高壓段或中壓 段各級動葉之間凹槽的量測,因空間窄小目前較不可行。

還有一些因素會影響量測的準確度,例如材料的晶粒大小、紋理 (Texture)組織以及試片表面的粗糙度⁽¹³⁾。一般而言,材料的晶粒大 小在10~100µm,對於X光繞射分析殘留應力是適宜的,但當晶粒太大 時,符合Bragg´s law繞射光的晶粒便相對變少,有可能使得繞射波鋒 相對降低,此時晶粒界面的微應變也會產生影響,這使得波鋒的位置 不易確認,應力分析的準確度也會減低;Texture組織則會在傾斜角度 測試時影響繞射光譜,因此也會影響量測的準確度,要降低上述因素 的影響,以Stresstech 公司的經驗,在傾斜角度測試時可以增加測試 點的數量,或者依照傾斜角度的範圍連續測試。至於試片表面因打磨 或研磨導致的粗糙或殘留應力,同樣也會影響X光繞射光譜,因此粒度 較細的拋光及切削力較低的研磨比較適宜。另外,使用電解拋光作為 試片表面處理的程序,也可以減少此一問題。

汽機高/中壓轉子長期在高溫下運轉,其表面有緻密的氧化層,一 般會先將其噴砂,再進行研磨及拋光的程序,以便進行複製膜取樣。
若要以X光繞射分析殘留應力作為壽命評估及轉子校直的參考,有必要
驗證研磨及拋光的程序與電解拋光的差異,以便在效率及精度間取捨。

整體而言,Xstress Robot確實可以符合絕大部份的量測需要,但 是仍免不了受限於機械手臂大小,例如大型工件超出機械手臂動作範 圍,或工作空間太小而有一定的深度,因此使得機械手臂無法到達, 或可以到達卻無法執行所需的動作。因應窄小空間的量測工作,可能 需要選購更小型的X光管,或加長機械手臂上的X光管承載機構,以適 度解決窄小空間的量測問題;可能有一些工件空間窄小或大型工件的 量測,有賴於如圖13的雙機械手臂來進行量測工作,圖中右側之機械 手臂附有X光源,左側之機械手臂則附有偵測器,兩者協同動作下的定 位技術及動作控制相信更為複雜^(14,15)。

(b)

圖 10 以三點彎曲試片驗證 Modified φ法之照片(a) 長軸方向
 力量量測(b) 寬度方向力量量測

(b)

圖11 高/中壓轉子簡圖及照片(a)全部簡圖(b)高溫段 照片

圖12 高/中壓轉子高溫區複製模照片(a)兩汽封環之間及汽封 環凹槽(b)衝擊段葉片底部近中壓#1級動葉(c)衝擊段葉 片底部近高壓段及高壓#1級動葉前凹槽

圖13 雙機械手臂執行大型工件殘留應力量測工作照片(14·15)

10

2、3 Stresstech 公司其他技術

許多的合金鋼都是靠著淬火處理,來達到所需要的機械性質,亦 即自高溫的沃斯田鐵組織,藉由急冷使之成為強度較高的麻田散鐵組 織,以達到較佳的機械性質,相對的殘留沃斯田鐵相可能造成後續的 相變化,導致內應力或者產生裂紋,因此沃斯田鐵組織轉變成麻田散 鐵組織的百分比愈大愈好。而當這些鋼材殘留沃斯田鐵相或者產生缺 陷或硬度過高時將如何檢測並預防呢?

Stresstech公司運用X光绕射分析設備,加上特別製作的偵測器滑 軌以及計算軟體,可以測得沃斯田鐵組織以及麻田散鐵組織的绕射波 峯強度,藉由此兩者的波峯強度與標準強度的比對及計算,便可以得 知殘留沃斯田鐵相的量,據以修正製程或熱處理程序⁽¹⁶⁾。表1為鋼材麻 田散鐵及沃斯田鐵組織的繞射角資訊⁽¹⁶⁾,由表1可得知:麻田散鐵組 織在2θ為106.1°及156.4°有繞射光譜可做為檢測用;而沃斯田鐵組織 在2θ為79.1°及128.3°有繞射光譜可做為檢測用。圖14顯示X光繞射分 析設備如何達到光譜之偵測,圖中顯示其特別製作的偵測器滑軌為偏 單邊固定,而兩個偵測器也未對稱置放,圖14(a)的裝置方式可以同 時測得麻田散鐵組織在106.1°及156.4°的繞射光譜⁽¹⁶⁾;而圖14(b) 的裝置方式則可以同時測得麻田散鐵組織在156.4°的繞射光譜及沃斯 田鐵組織在128.3°的繞射光譜⁽¹⁶⁾。

對於硬度過高或產生缺陷的鋼材,Stresstech公司則是以材料的 鐵磁特性開發Barkhausen Noise的品質管控設備,原理是當這些材料 產生缺陷或者硬度過高,其Barkhausen Noise也會相對偏異常升高, 因此Barkhausen Noise的設備可以做為品質管制之用⁽¹⁷⁾。Stresstech

-24-

公司自行研發各種適合客户使用的測頭,可以接受客製化定製。圖14 為Barkhausen雜訊偵測情形,圖15(a)、(b)為量測齒輪的情形,圖 15(c)為各種硬度之Barkhausen Noise規塊,圖15(d)則為其量測 汽車曲柄軸的情形⁽¹⁷⁾。

	hk1	2θ	R
	200	106.1	18.92
林田散鐵	211	156.4	183.13
	200	79.1	26.42
次 斯田鐵	220	128.3	51.54

表1 鋼材麻田散鐵及沃斯田鐵組織的繞射角資訊⁽¹⁶⁾

(a)

(b)

圖14 量測殘留沃斯田鐵測頭、滑軌及偵測器安置情形⁽¹⁶⁾ (a)量測肥粒鐵時(b)量測殘留沃斯田鐵時

(b)

(a)

(c)

(d)

圖15 Stresstech公司Barkhausen雜訊偵測情形⁽¹⁷⁾(a)、(b)量 測齒輪(c)硬度規塊(d)量測汽車曲柄軸

三、Microfusione Stellite 公司研習

至義大利 Microfusione Stellite 公司研習的主要目的,在於參 訪其氣渦輪機氣機段葉片脫蠟精密鑄造技術及經驗,以提昇本公司對 葉片精密鑄造技術之瞭解,並評估將來與 Microfusione Stellite 公 司合作之可行性。以下就精密鑄造流程及 Microfusione Stellite 公 司實際製作程序介紹,再介紹 Microfusione Stellite 公司現況以及 參訪所討論的實務工作。

3、1 精密鑄造流程介紹

最廣泛用於氣渦輪機熱段組件的精密鑄造技術是為脫蠟精密鑄造 (或被稱為包模鑄造),可分為實體陶模法(或被稱為實心模法)與陶瓷 殼模法,實體陶模法是在蠟模組成的蠟樹外圍先套上一個型框,將泥 漿直接注入型框中,完全充滿模框,將蠟樹包圍,型成一個實體鑄模, 待其自硬性凝固後,然後經脫蠟、燒結後便可以進行澆鑄,陶瓷殼模 法則是將蠟樹反覆沾漿及淋砂,使其表層經由反覆式的沾漿及淋砂作 業而形成一層適當厚度耐火材料的殼模包覆在蠟樹外面,利用加熱使 蠟模脫模,將陶瓷殼模燒結後,便可以鑄入金屬溶液,等鑄件凝固後, 將陶瓷殼模敲碎便可以獲得的鑄件^(18~20),以上程序如圖 16 所示⁽¹⁸⁾, 分別為灌蠟模、組蠟樹、沾漿、淋砂、脫模及澆鑄。

脫蠟精密鑄造法具有許多特色:1. 可鑄造無法切削和具放射性的 金屬。2. 可獲得精度良好且沒有分離線的極光滑表面。3. 可鑄造出外

-27-

形複雜、壁薄、花紋精細的製品。4. 尺寸精確度極高。5. 可適用於零 星生產,也可以配合機械手臂進行自動化大量生產^(18~20)。脫蠟精密鑄 件廣泛應用於噴射引擎、燃氣渦輪、飛機零件、蒸汽渦輪、車輛、閥 件及武器等零件⁽²⁰⁾。

3、1、1 製作臘模

製作蠟模前必須先製作主模型,主模型的外形與最終製品的近似,但製作時須考慮到蠟的冷凝收縮,鑄模的加熱膨脹與鑄造金屬的 冷凝收縮,以便得到尺寸符合要求的鑄件。例如蠟型的冷縮率是1.2%, 鑄模的熱脹率是0.7%,鑄造金屬的冷縮率是1.7%時,則主模型的尺寸 增加率則為2.2%⁽²⁰⁾。

灌製蠟模時,將加熱的蠟灌入主模型,一定時間後取出蠟模並持 續冷卻一段時間使蠟模定型,若干個蠟模依照設計的方案與澆道及蠟 模頭藉著電烙鐵及接合蠟接合成一株蠟樹,以上如圖 16 (a)、(b) 所 示⁽¹⁸⁾。氣渦輪機氣機段動、靜葉片由於內部形狀複雜而塗覆漿無法附 著,因此必須使用心型,實務上心型固定於主模型內並與主模型保持 應有的相對位置,在澆鑄蠟模並取出後,絕大部分心型被蠟模包覆僅 剩部分外露,製作陶瓷殼模後,殼模與心型外露部分連結在一起,脫 蠟後殼模與心型之間的空間便是所需澆鑄的葉片形狀了。心型的種類 有金屬心型,可溶蠟心型和陶心型,氣渦輪機氣機段動、靜葉片,尤 其是動葉片由於中空部份細長,因此大多使用氧化鋁粉,尖晶石粉、 鈦酸鋇粉等與矽酸乙酯、膠矽土或樹脂等粘結劑混合作成陶心型,於 成品澆注,疑固後,再以溶劑將陶心型溶出⁽¹⁸⁾。

(d)

(e)

(f)

圖16 脫蠟精密鑄造流程⁽¹⁸⁾ (a) 灌蠟模(b) 組蠟樹(c) 沾漿 (d) 淋砂(e) 脫模(f) 澆鑄 圖 17 為 Microfusione Stellite 公司組立蠟樹的情形⁽²¹⁾,圖 17 (a)、(b)為 Siemens V94.2 第三級動葉片澆鑄蠟模的情形,該公司 在澆鑄蠟模模具內預先放置了一個小型的蠟模,這是因為 V94.2 第三 級動葉片的根部厚實且各部位厚度差異很大,為避免蠟模於冷卻階段 變形,該公司因此預先澆鑄該蠟模小型,將其放置在模具內,如此一 來第二階段澆鑄的蠟模,在各部位的厚度變得較為相近,冷卻階段的 變形將可以避免,圖 17 (c)為參考自其他文獻的葉片組立成蠟樹的照 片⁽²²⁾,對於 V94.2 第三級動葉片, Stellite 公司乃是將 6 支葉片組 立成一支蠟樹,圖 17 (d)為蠟模頭澆鑄口端固定吊掛頭的照片⁽²¹⁾。

圖 18 為 Stellite 公司葉片與砂心照片,圖中箭號所指的砂心一 端對應於另一箭號所指的葉片端,砂心在該位置長度較長,在澆鑄蠟 模後會外露,該部分在後續程序中將與陶瓷殼模接合。包覆砂心的蠟 模冷卻足夠的時間後,該公司會以 X 光檢測驗證其是否接合良好⁽²¹⁾。

(b)

(a)

-30-

(d)

(c)

圖17 Microfusione Stellite公司組立蠟樹的情形⁽²¹⁾(a) 置放蠟 心(b) 取出蠟模(c) 組樹一例⁽²²⁾(d) 澆鑄頭固定吊掛頭

(a)

(b)

圖18 Microfusione Stellite公司葉片與砂心照片⁽²¹⁾ (a) 一級靜葉(b) 二級靜葉

3、1、2 製作陶瓷殼模

沾浆及淋砂以製作陶瓷殼模,為包模鑄造製程中極重要的關鍵作 業,為了在蠟模外形成一定厚度的陶瓷殼模,蠟模必須反覆浸入陶瓷 泥浆及撒上耐火材料的動作直到陶瓷殼模殼模達到一定厚度,根據資 料顯示至少要有5層以上的厚度,過程也需要配合自然乾燥⁽¹⁸⁾。

沾漿作業視需要可以採用手工沾漿也可以採用機械手臂進行自動 沾漿;淋砂可以採用手工淋砂也可以採用機械手臂進行,淋砂時通常 是將陶模耐火砂粒由上而下灑在蠟樹上,此方式對於深孔凹槽產品較 有利,可製造出精美成品,因此通常在第一道陶模製作均使用此一方 式,其他道可以視需要採用不同的淋砂法;不同道的沾漿及淋砂之後 通常需要置於乾燥室3或4小時以上,同時要管制乾燥室內溫濕度條 件是否在標準規範內。沾漿完成之陶模乾燥後再沾最後一道漿液然後 不再淋砂,然後直接掛於臺車上,再放置於乾燥室中24小時,進一步 將含蠟模的陶瓷殼模倒置於加熱爐中,加熱使熔融的蠟滴出回收再 用,將陶瓷殼模包上一層保溫材料並加熱燒結後,陶瓷殼模便可以準 備做澆鑄用,以上如圖16(c)、(d)、(e)所示⁽¹⁸⁾。

圖 19 為 Stellite 公司沾漿及淋砂過程照片,基本上 Stellite 公 司採用人工以及機械手臂進行沾漿及淋砂的工作,該公司認為熟練且 細心的技術人員,比機械手臂更能夠確保蠟模的每一個角落均勻且完 全沾附泥漿及耐火砂粒。圖 19(a)為人工沾漿作業照片,圖 19(b) 為機械手臂淋砂作業照片,圖 19(c)為常溫乾燥作業照片,圖 19(d) 則顯示陶瓷殼模倒置於加熱爐中,加熱至 150℃以除去蠟模⁽²¹⁾。

(a)

(b)

(c)

(d)

圖19 Microfusione Stellite公司沾漿及淋砂情形⁽²¹⁾(a)沾浆 (b)淋砂(c)淋砂後靜置(d)脫模

3、1、3 工件澆鑄

部份氣渦輪機熱段組件材料(例如 UDIMET 500、HESTELLOY 等), 並不需要在真空中澆鑄,只在大氣中澆鑄即可,某些超合金(例如 INCONEL 738、INCONEL 939、GTD 111、MAR 247、MGA 1400 及 CMSX-3 等),由於含有特定的活性元素(如鈦、鋁等),如果在大氣中熔解這 些元素很容易形成氧化物、氮化物等介在物,如此一來不但無法正確 控制成份,且會影響合金燒鑄的成型性及燒鑄後的機械性質。為解決 此一問題,這類合金的熔解、澆鑄都在真空爐內進行。真空鑄造法除 了避免前述鑄件與空氣之氧化作用之外,也可以減少內部氣孔、縮孔 等缺陷,表面及內部晶粒組織也會更細緻,並且鑄件強度高於傳統鑄 造,此一方法也更適合細小零件大量生產,並縮短交期⁽¹⁸⁾。不論是在 大氣或真空中澆鑄產品,陶瓷殼模都需先包覆一層保溫材料,再燒結 成形後,經由預熱及保溫才可以進行澆鑄。

Microfusione Stellite 公司有一些熱段組件由 HESTELLOY 材料 鑄造而成,該類鑄件於大氣中澆鑄沒有氧化的顧慮,因此採用大氣澆 鑄的設備及器材,另外也有真空自動熔鍊及澆鑄設備,一次可以澆鑄 200 公斤重的鑄件,圖 20 (a)為預熱及保溫的陶瓷殼模⁽²¹⁾,圖 20 (b) 為真空自動熔鍊及澆鑄設備示意圖⁽¹⁸⁾,圖中右上方為合金材料添加 室,當閥門打開時合金材料可以送入真空鎗,圖中下上方為真空陶模 室,當閥門打開時陶瓷殼模可以送入真空鎗進行真空澆鑄⁽¹⁸⁾。

(b)

(a)

圖20 Microfusione Stellite公司澆鑄情形⁽¹⁸⁾(a) 陶瓷 殼模預熱(b)真空澆鑄

3、1、4 後續處理及檢測

Microfusione Stellite 公司自敲碎的陶瓷殼模取出樹狀的鑄物 後,會先切割取下單一的鑄造組件並去除毛邊,如圖 21 (a)所示,然 後將鑄件送進真空熱處理爐中進行固熔處理,必要時同時進行析出硬 化熱處理,以得到較佳的機械性質,如圖 21 (b)所示。有些鑄件依照 客戶的要求並且需要進行熱均壓處理,以降低空孔的存在⁽²¹⁾。

真空熱處理後的鑄件,需要以非破壞檢驗進行品質管制,主要是 針對鑄件中某一部位,做一詳細的外觀與內部缺陷的檢測,以符合客 戶要求,通常可以考慮的方法有:液滲檢測、磁粉探傷、螢光檢測、X 光檢測、超音波檢測⁽¹⁸⁾。Microfusione Stellite 公司採用的是螢光檢 測及 X 光檢測。前者乃是將鑄件浸泡於螢光性滲透劑並保持一段時間, 然後將鑄件表面多餘的滲透劑除去,再把鑄件置於黑暗空間之中,利 用紫外線檢視鑄件是否有表面瑕疵或線性指示,如圖 21 (c)所示;後 者則是在鑄件完成鑄造或熱處理後,利用強度足以穿透鑄件的 X 光執 行放射線照相檢測,以檢驗鑄件內部是否有氣孔、夾渣、縮孔、裂縫 及嵌入物等缺陷,如圖 21 (d)所示。

參訪 Microfusione Stellite 公司時,該公司正在產製 Siemens 公司 V94.2型氣渦輪機氣機段第三級動葉片,為了確保鑄件的尺寸確 實符合要求,該公司會將每一支葉片根部的配合面、導翼面、尾翼面 等區域的某一部位以 ZEISS 接觸式三次元量測驗證尺寸,如圖 21(e) 所示。另外為了瞭解葉片材質是否符合要求,Stellite 公司會抽檢 1 %的葉片,將其切片觀察金相組織是否符合要求。並且基於品質管制 的目的,Stellite 公司於澆鑄時會同時灌鑄一批試棒,如圖 21(f) 所示,以便進行高溫拉伸及試驗潛變試驗,前述兩項機械性質測試是 航太業及氣渦輪機熱段組件常使用的進料檢驗程序。

圖21 Microfusione Stellite公司鑄件澆鑄後續工作⁽²¹⁾
 (a)去邊(b)真空熱處理(c)螢檢(d)X光檢查
 (e)三次元量測(f)真空澆鑄之拉伸試棒

3、2 Micrifusione Stellite 公司業務狀況

Micrifusione Stellite公司主要生產精密鑄造件,其隸屬 Deloro Stellite集團,總部設於英國奧克森。Micrifusione Stellite公司員 工200人以上;年營業額超過3仟萬歐元;每年售出鑄造產品達300噸, 主要接受GE、Siemens、Alstom、Ansaldo等公司的0EM訂單,85%業務 為氣渦輪機組件;15 %業務為間接供應義大利客戶航天組件⁽²¹⁾。

Micrifusione Stellite公司自1948年成立至今,於1965年獲得 Misco Monsanto公司大量技術轉移,其自1972年投入氣渦輪機組件生 產,至1984年陸續成為Fiat、ABB、GE公司之供應商。該公司總計通過 美國NADCAP(航太認證)及7個客戶的認證。圖22為其生產的組件照片, 圖(a)為航天組件,圖中箭號所指為操縱桿,圖(b)為動、靜葉片, 圖中多為GE公司葉片,該公司近期大多產製Siemens V94.之組件,圖 (c)為熱段組件,圖中箭號所指為Alstom GT11機型噴油嘴⁽²¹⁾。

(a)

-39-

(c)

(b)

圖22 Micrifusione Stellite公司精密鑄造產品⁽²¹⁾(a) 航天組件 (b)動、靜葉片(c) 其他熱段組件

3、3 本公司氣渦輪機氣機段葉片精密鑄造討論

本公司目前的氣渦輪機機組以Siemens V84.2機型以及Mitsubishi M501F機型為主,V84.2機型與新近Microfusione Stellite公司正在生 產的V94.2機型鑄件非常相近,因此以其中鑄造難度較高的第一、二級 動葉片的鑄造問題與Microfusione Stellite公司人員討論,此兩級動 葉片都是以Inconel 738材料經精密鑄造而成,兩者也都有許多冷卻孔 在葉片內部,如圖23西門子公司V84.2動葉片照片⁽²³⁾所示,圖23(a) 顯示V84.2機型氣機段第一級動葉片內部的冷卻流道非常複雜,甚至有 許多肋骨狀及柱狀結構連結壓力側及背壓側葉面結構,可見其鑄造用 砂心形狀非常複雜;至於第二級動葉片內部的冷卻流道相對較筆直單 純。Microfusione Stellite公司人員認為V84.2機型葉片與V94.2機型 葉片非常相近,前者幾乎是後者的縮小版,因此鑄造V84.2機型各級 動、靜葉片對於Microfusione Stellite公司並非難事,根據該公司的 經驗,第一級動葉片鑄造需製作砂心;至於第二級動葉片則只須在鑄 造後以放電加工方式鑽孔即可。根據Microfusione Stellite公司人員 的估計:設計及製作第一級動、靜葉片精密鑄造所需模具及砂心,需 花費約20萬歐元,其餘各級的開模費用則相對較低⁽²¹⁾。

圖24為Mitsubishi M501F機型第一級動、靜葉片照片⁽²⁴⁾,顯示兩 者均有非常多的冷卻孔,Microfusione Stellite公司人員認為這些細 小的冷卻孔應是應用鑽孔技術製作而成,其精密鑄造無太大困難。經 審視葉片材料規格⁽²⁴⁾,第一級動葉片乃是使用MGA 1400DS(Directional Solidification)材料;第二級動葉片是使用一般冷卻方式的MGA 1400 材料;第三、四級動葉片均使用Inconel 738材料。因此,以Microfusione

-41-

Stellite公司現有的技術經驗,Mitsubishi M501F機型除了第一級動 葉片的鑄造需待開發方向性凝固技術的葉片之外,其餘各級動葉片 Microfusione Stellite公司均可以執行鑄造工作;至於各級靜葉片的 材料規格,第一、二、三級靜葉片均是使用一般冷卻方式的MGA 2400 材料⁽²⁴⁾;第四級動葉片則是使用一般冷卻方式的X-45材料⁽²⁴⁾,其鑄造 對Microfusione Stellite公司並不困難。

對於鑄造時因不同凝固方式而得到方向性凝固葉片或單晶葉片, Microfusione Stellite 公司人員表示各種的材料只適合部分的製程, 不過材料之取得並不困難。表2說明了幾種葉片鑄造常用材料所適合 之鑄造凝固程序⁽²¹⁾,例如廣為使用且先進的 Mar-247 材料適合鑄造一 般葉片及方向性凝固葉片⁽²⁴⁾,但無法用來開發單晶葉片,其他材料如 GTD-111 及 MGA 1400 材料也類似,而 CMSX-4 材料則只做為單晶葉片用。

開發單晶及方向性凝固葉片關鍵製程不在鑄造方案,而在冷卻過 程之控制,為使葉片材料成為如圖 25(a)、(b)之方向性凝固葉片或 單晶葉片,需設計並建立類似圖 25(c)中的特殊加熱或保溫設備⁽²⁵⁾, 使葉片只在單方向成長晶粒,甚至只長成一個晶粒。由於需投入的資 金、人力及時間甚巨,Microfusione Stellite 公司尚未有此規劃。

	Mar-247	GTD-111	MGA 1400	CMSX-4
一般凝固方式	M 247 LC	0. K.	0. K.	×
方向性凝固	M 247 DS	0. K.	0. K.	×
單 晶	×	×	×	0. K.

表2 各種鑄造用葉片材料所適合之鑄造凝固程序(21)

圖23 西門子公司V84.2葉片照片⁽²³⁾(a)第一級動葉片(b)第二級動葉片

圖24 三菱公司M501F葉片照片⁽²⁴⁾(a)、(b) 第一級動葉片(c)、(d) 第一級靜葉片

圖25 多晶、方向性凝固及單晶之凝固過程⁽²⁵⁾(a)示意圖(b)葉片表面紋理及色澤(c)單晶凝固過程示意圖

四、心得及建議

- X光繞射分析法可以輔助汽機壽命評估及轉子校直工作,也可以應
 用該技術量測再生之葉片絕熱塗層及陶瓷層。
- 2、運用電解腐蝕法,可以增加殘留應力量測深度,也可以降低打磨或 抛光導致的量測誤差。
- 3、Microfusione Stellite 公司對於 Siemens V84.2 機型葉片的鑄造 經驗豐富,其估計第一級動、靜葉片的開模費均為 20 萬歐元。
- 4、Mitsubishi M501F 機型第一級動葉片的鑄造需開發方向性凝固技術,其餘葉片的鑄造,Microfusione Stellite 公司均能勝任。
- 5、經評估 Microfusione Stellite 公司合作之技術及經驗豐富,合作 是可行的。

五、参考資料

1、Stresstech 公司, "Stress Measuring", 簡報資料。

2、賴耿陽譯著,"鑄造技術的基礎",復漢出版社印行。

3、"殘餘應力分析",自網路下載之文章。

- 4、 H. Feichtinger, G. Stein, I. Huchlenbroich, "SCC Case History of A 18Mn18Cr Retaining Ring Affected by Stress Corrosion Crachs", EPRI-107770, Generator Retaining Ring Workshop, December 8~9, 1997, Miami, Florida.
- 5、劉全,李鏵登, "EDM 應變規鑽孔法測量殘留應力之最佳化流程設計",國立成功大學博士論文,2008.
- 6、Stresstech 公司, "Hole drilling", 簡報資料。
- 7、HBM公司設備照片,取材自其網站.
- 8、Stresstech 公司資料"Residual stress measurement based on hole-drilling and ESPI"
- 9 Theo Rickert "Comparison of Residual Stress Measurements Using X-Ray Diffraction and PRISM - Electronic Speckle Pattern Interferometry and Hole-Drilling" American Stress Technologies, Inc., a member of the Stresstech Group
- 10、Stresstech 公司"X-ray Diffraction", 簡報資料
- 11 · Paul S. Prevéy, "X-RAY DIFFRACTION RESIDUAL STRESS

TECHNIQUES", Lambda Research, Inc.

12、Stresstech 公司"Xstress Robot"型錄資料

- M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J.
 Shackleton and L. Suominen "Determination of Residual Stresses by X-ray Diffraction - Issue 2" Measurement Good Practice Guide No. 52
- 14、R. Hessert, W. Satzger, A. Haase, A. Schafmeister "A New Type of X-ray Diffractometer with Cooperating Robots for Residual Stress Analysis on Large Components", Technologic Report of "MTU Aero Engines GmbH" & "GE Inspection Technologies GmbH".
- 15 Roland Hessert, Wilhelm Satzger, Alfried Haase, Achim Schafmeister "Cooperating twin robots form a new X-ray diffractometer for stress analysis", Int. J. Mat. Res., formely Z. Metallkd, 97 (2006) 10
- 16、Stresstech 公司, "X-ray Diffraction -Retained austenite measurement.", 簡報資料。
- 17、Stresstech 公司, "Barkhausen Noise as a Quality Control Tool.", 簡報資料。
- 18、林宗献"精密鑄造學", 全華圖書股份有限公司印行.
- 19、"現代鑄造方法",自網路下載之文章。
- 20、郭翰融"精密鑄造脫蠟法",學校專題報告.

- 21、Microfusione Stellite 公司型錄及簡報資料.
- 22 R. G. NICHOLAS. "PRECISION CASTING BY THE 'LOST WAX' PROCESS", Presented to the Manchester Graduate Section of the Institution, 9th November, 1955.
- 23 \ D. Gandy, Combustion Turbine Guidelines: Conventional and Advanced Machines, Volume 9: Siemens V84.2,1010476, EPRI Final Report, November 2005 .
- 24 Rich Curtis, John Scheibel, "M501F/701F Project Meeting Repair Guideline Review", EPRI Presentation Materials.
- 25、"Single Crystal Casting and Rapid Solidification",自網 路下載之文章。