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Abstract

In this research, we investigate the Rayleigh-Bénard
(RB) problem of rarefied gas flows in horizontal
rectangular micro-enclosures by using Direct Simulation
Monte Carlo (DSMC) method. Major concerns are the
effects of rarefaction and side wall boundary conditions. In
DSMC simulations of Rayleigh-Bénard convection,
specular reflection conditions are usually specified for
lateral side boundaries. However, the real enclosure is
bounded by solid walls. The present work is thus also
aimed to apply an improved gas-surface collision rule for
modeling adiabatic wall condition. This gas-surface
interaction model keeps the particle velocity magnitude
invariant and the velocity direction of the reflected particle
is set based on isotropic scattering uniform distribution in
the half space. This boundary treatment is physically more
reasonable for description of reflected molecules at
adiabatic solid surface. From effective DSMC calculation
and numerical visualization, insight into the influences of
rarefaction and side wall boundary conditions on this
classical problem can be obtained.

1. Introduction

Natural convection phenomena happens in our daily life.

For example, climate and ocean current, are resulted from
natural convection. Rayleigh-Bénard (RB) convection, a
classical problem in fluid dynamics, is one kind of natural
convection, too. The fluid is between two horizontal plates
and heated from the bottom. The fluid transforms from pure
conduction state to convection state as the temperature
gradient reaches its critical value. Rayleigh [1] used
Boussinesq approximation to analyze Bénard’s [2]
experiments. In the experiments, a thin layer of fluid was
heated uniformly from a metal plate below it. Then the fluid
transformed to convection state. So it is called Rayleigh-
Bénard convection problem. There are a lot of researches
adapted continuum model to investigate RB convection. In
Koschmieder’s book [3], Jeffreys was the first one to
study RB problem with two rigid boundaries on both top
and bottom walls.

This thermal driven flow was discussed widely in one
centenary. Studying RB convection had many important

results [4]~[8], in large scale regime. However, using
molecular model to study RB problem began in 1980’s.
Molecular dynamics (MD) simulation [9,10] and direct
simulation Monte Carlo (DSMC) [11,12] are commonly
used methods in numerical simulation studying fluid
behavior. In these two simulation tools, MD simulation is
often used for dense fluids or liquids, such as water. The
computational time in MD simulation is proportional to
square of the number of molecules in the fluid system. Time
consumption limits the number of molecules in MD
simulation. On the other hand, DSMC method is commonly
used for studying dilute gas. In DSMC, tremendous amount
of real molecules are represented by small amount of
simulation particles. Therefore, the number of particles in
DSMC is much less than that in MD simulation. Bird [13]
proposed DSMC method for studying shock. Then DSMC
was applied for investigating dilute gas [14]. In 1990,
Garcia [11] used DSMC to study RB convection. It seems
to be the first DSMC computation in RB problem .

After Garcia’s investigation, Cerciginani and Stefenov
[12] studied Bénard instability using the same method,
however the definition of Rayleigh number ( Ra ) were
different from each other. Several classical problems,
critical Ra , flow patterns and flow instability, are
commonly studied. The influence of temperature difference
or aspect ratio is often discussed in studying RB convection.
Watanabe et al [15] studied critical Ra in two-dimensional
RB computation. Their results were in good agreement with
which in traditional hydrodynamics. However, Garcia et al
[16] had different expression on the results of Watanabe
[15]. Garcia pointed out that the boundary condition
influence flow in Watanabe’s studying. Watanabe and
Kaburaki [17] studied RB convection with large aspect ratio
in three-dimensional regime. They discussed the flow
pattern transformation and got obvious contributions in this
three-dimensional simulation. Stefanov et al. [18~20]
explored the effects of Knudsen number (Kn) and Froude
number (Fr) in two- and three-dimensional RB problem.
They discussed this problem systematically and predicted
periodic and chaotic attractors.

In this study, a side-walls treatment different from
previous study is applied to modify adiabatic rigid wall in
three-dimensional RB problem. Rarefied gas is studied in a



rectangular enclosure. This treatment is much closer to real
adiabatic wall than periodic one. The effects of Kn and
temperature ratio are studied.

2. Numerical method

2.1. Rayleigh-Bénard convection in rarefied gas

A number of researchers studied the classical flow
instability problem [21~23]. The flow is driven by
temperature difference. Ra, a dimensionless parameter, is
often considered. In hydrodynamics, Ra represents the
product of Gr and Pr . In which, Gr is used for
describing the ratio of buoyancy and viscous force. Pr is
represented the relation between thermal and kinematical
diffusivity. Ra can be shown as follows:

ATL?
g (1)
19104

In equation (1), g, L,v, and a represent gravity,

Ra=Gr-Pr=

distance between top and bottom boundary, momentum
diffusivity coefficient, and thermal diffusivity coefficient,
respectively. Besides, AT is the temperature difference
between top and bottom walls. As the AT reaches a critical
value, then fluid transforms from conduction state to the
convection one. Under this condition, one gets a critical
value Ra,.

Rarefaction of gas is represented by the non-dimension
parameter shown as equation (2):

Kn=A4/L, )

In which, /1:1/\/57rd2n0 is the mean free path of

molecules. L. is the characteristic length. The symbol d

and Ny represent radius of molecule and number density,
respectively. The larger of Kn, the more significant of
Rarefaction effect. According to Bird [24] and Kamiadakis
and Beskok [25], fluid flow can be divided into several
regimes. Continuum flow ( Kn<107Z ), slip flow

(102 <Kn<10™"), transition flow (107! <Kn<10), and
free molecule flow (Kn>10). In general, Hydrodynamics
studies fluid as continuum, however, this model is not able
to describe flow phenomena precisely as the rarefaction
effect geting significant. In this study, we adopt molecular
model to avoid the break down in continuum one.

Because adopting molecular model, the definition of
Rayleigh number ( Ra ) is different from which in
macroscopic. In this investigation, Ra is defined as which
in Stefanov et al. [20] proposed.
Ra — 2048 (d-r)

757 (1+%)*-Fr-Kn?

In equation (3), I is temperature ratio between top and

3

bottom walls (T. /T, ) ; Fr is Froude number, representing

the ratio of kinematical and potential energy. Equation (4)
shows the definition.

Vi
g-Lc

Fr =

“

2.2. Adiabatic boundary condition

Garcia et al [16] indicated the neglect boundary effect
in Watanabe [15] will influence computation result
obviously. Most of researchers adopted Maxwell’s [26]
gas-surface interaction rule. Even in MD simulation [27],
for studying similar RB problem, also used the same rule to
simplify model. Maxwell proposed two typical gas-surface
interaction. One is specular reflection, another is diffuse
reflection. In specular reflection, the tangential velocity
keeps unchanged as the gas molecule reflected from surface.
However, the normal velocity is as large as pre-collision
one in magnitude but opposite in direction when molecule
is reflected. For diffuse reflection, reflected molecule’s
velocity is only depended on surface’s temperature. Besides,
the direction of reflected molecule is equal probability in all
directions. Cercignani and Lampis [28] were the precursors
who investigated gas-surface interaction with molecular
model. Lord [29,30] applied Cercignani and Lampis’ model
on DSMC simulation. Follower called this model as CLL
model [24].

For simulation RB convection with DSMC method, the
boundary condition is commonly treated as diffuse
reflection (isothermal) on top and bottom boundaries.
Specular reflection (adiabatic) is set in the lateral walls.
Table 1 shows the boundary conditions adopted in previous
studies. In Table 1, researchers used DSMC to study similar
RB problem.

Tzeng et al [31] proposed one adiabatic gas-surface
interaction to investigate instability phenomena in two-
dimensional RB convection. In their reflection rule, the
normal reflect velocity is unchanged in magnitude and
direction opposite with pre-collision one. Then tangential
velocity is depended on conservation of energy. They
applied this reflection rule on the lateral walls. This study
improves the reflection rule stated above. This improved
reflection rule is based on energy conservation. Besides, the
reflected velocity is equal probability in all directions. The
purpose is to assimilate a uniform roughness surface. This
treatment is much closer to real adiabatic rigid wall than
specualr reflection.

2.3. Mathematical formation

DSMC method used statistical mechanism to solve
Boltzmann equation. In this method, gas velocity
distribution function is the most important for flow
macroscopic properties. For equilibrium state, it can be
shown as equation (5), so called Maxwellian distribution
function.

fo=Coexp(-pV?)
72-2

b= 1 zfi
v2RT 2kT
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All flow properties, momentum, energy, density,
pressure, are related to integral of distribution function. So
does the flux between gas and surface.

There are several gas-surface models proposed by
previous researchers. However, it adopted diffuse or
specular reflection to study rarefied gas in rectangular
enclosure convection problem, generally[15,17-20]. It
seems necessary to explain the specular and diffuse
reflection first. Consider one particle interacts with solid
wall. The velocity components along with directions of
tangential keep invariable after scattering from solid wall.
While normal component of velocity is reversed. It results
that particle leaves surface with the same angle of incident
and no kinematical energy exchanged. The following
equation (6) shows relation of specular reflection.

Vo '=-Vq
Vi '=Vu (6)
Vie '=Via

In equation (6), V' and V are both after collision and
pre-collision velocity. The subscript n and t represent the
normal and tangential direction of surface. For diffuse
reflection interfacial, the reflected velocity is showed as
below:

Vi ’:_|Vmp|'Rf11/2

Vo' = M| - 1= Ry )2 -sin(27Ry ) @)
Vio ' = Vi |- (1=Ry)'"? -cos(27Ry )
Vmp , as listed above, is most probability thermal

velocity, which depended on interfacial temperature. R is

a random number and its range is between 0 to 1.

In this literature, we proposed a novel interaction rule to
model the adiabatic solid wall with uniform roughness. A
real wall shows friction on flow and adiabatic condition
leads to no heat flux. The velocity of scattered particle can
be prescribed as below:

Vn ’=—|V|~ Rf11/2
Vi '=|V[-(1=R1)"? sin(27R¢2) ®)
Vio'=|V|-(1=R1)"? -cos(27Rt2)

Equation (8) shows the mathematical form for the
adiabatic rigid boundary, proposed in this research and
applied on lateral walls in three-dimensional RB problem.
Physically, it describes the particles through half-sphere
with equal probability. The radius of sphere is V . To
integrate the probability which particles across surface of
the half-sphere is equal to 1. Then transfer coordinate from
sphere to Cartesian.

2.4. DSMC method

This study adopts DSMC method, which proposed by
Bird [24], for investigating RB convection. DSMC is based
on statistics mechanism. It uses statistics to find molecule
velocity distribution function. That is equivalence to solve
Boltzmann equation. In this method, amount of real

molecules are represented by handful of simulation particles.
There are several main processes in DSMC simulation. (1)
Initialize conditions; (2) Move simulation particles; (3)
Give index to identify particles; (4) Select collision pairs; (5)
Sample the molecules properties; (6) Represent
macroscopic properties by summing particles properties.
The novel gas-surface interaction in this research is in
process (2). Furthermore, in order to decrease computation
time, this study adopts the modified no time counter (M-
NTC) to select collision pairs. The M-NTC is proposed by
Bird [32], in 2007.

Table 1 Boundary condition for Rarefied gas RB
convection.

Boundary condition
Auth A
uthor(year) ) top & bottom  sides
Cercignani 0.01
and Stefanov 2,3 0.02 Diff. SP
(1992) [12] 0.05
Watanabe et  2.016 0016 SemDil—flgi ff SP
al. (1994) [15] 2.83 Slip
Watanabe and 2901~ SP
Kaburaki 8 8 1 0.016 Diff.
(1997) [17] e
Stefanov et al. 0.01~ . SP
(2002)[18][19] 2 0.03 Diff.
Stefanov et al. 1.5:1.5:1 8882 Diff SP
(2007) [20] ~6:6:1 0.02
Tzeng et al. 2.016  0.01~ Diff SP
(2008) [31] 4 0.02 ’ Pt-SD
0.01
Present Work  2:2:1 0.02 Diff. IS
0.04

*Diff.=diffuse, SP=specular, Pt-SD= partial specular and
partial diffuse, IS= isotropic scattering

2.5. Simulation conditions

In this research, hard sphere model is adopted for the
collisions between molecules. The temperature ratio
between top and bottom wall is from 0.1 to 0.67.
Kn number is between 0.01 and 0.04, Fr is fixed at 3.
The computation domain A=Ll,/L,:L,/L;:L, /L, is
2:2:1. Where Ly, Ly, and L, are the box dimension in
coordinate directions. Hereafter we fix A in our study. We
should use A=L,/L, =2 instead of the longer definition
above. Air is considered as simulation molecule. The mass
of air molecule is 4.8x107 kg. Diameter of molecule is
3.7x107"% m. Initial pressure is 20 Pa. The top wall’s
temperature is fixed in 80 K. Under this situation, the
number density is counted as 1.81x10”m™, and the mean
free path of molecule is 9.08x 107 m. The grid is divided
into 40x40x20 sampling cells. Each sampling cell is refined



by 5x5x5 collision sub-cells. This is for the reason of
making the sub-cell smaller than Ay . The time interval is
set as half mean collision time (7;), where 7z = Ay /Vj is
defined by mean free path and most probability thermal
velocity. Mean collision time denotes an average time
interval where is no collision occurrence. Besides,
Vh = (2kgT/m)™"% s

temperature. Total simulation particles are 4x107. There
are ten simulation particles in each sub-cell in computation
domain.

depended on bottom wall’s

3. Results and Discussion

3.1. Verification

Before investigating RB convection, we verified our
programs first. In contrasting with Stefanov et al [20] the
simulation results are showed in Figure 1. The simulation
conditions are Kn=0.02, Fr=3, i =0.1. The red line in
Figure 1 represents the result of Finite difference (FD),
which based on Navier-Stokes equation. And the circle
symbol is the DSMC results of Stefanove, in 2007, The
triangular symbol is present results. All the properties are in
good agreement with previous study not only in quality but
also in quantity.

3.2. Rarefaction

In the beginning, we investigate RB convection with
different rarefaction conditions. Table 2 shows different
simulation conditions with specular sidewalls boundaries.
In this section, the lateral walls are set as specular reflection.
Two different Kn numbers are studied with various Iy .
Figure 2 shows the convection current as Fr=3.0 ,
Kn=0.01, and different rr . Asrr =0.67, the convection
phenomena is hard to find. However, under the
condition i =0.2, one can see a circular centerline in the
slice of computation domain. The centerline denotes
vertical velocity equal to zero. In this case, convection
current flows down in the center of box, and rises up near
sidewalls. As the r =0.1, the convection pattern forms a
pair of roll. The centerlines parallel to x axis.

Then, Kn number is set as 0.04 with the same sidewalls
boundary. Figure 3 shows the convection current and
vertical velocity contour on the slice of middle z. The
centerlines, under these conditions, form square.
Convection current flows down to bottom wall inside of the
centerline and rises up from outside.

3.3. Adiabatic rigid lateral walls

Now, the isotropic scattering (IS) boundary condition is
applied on lateral walls. Simulation conditions list as Table
3. Similar to previous section, Fr number is fixed at 3 and
two different Kn numbers are investigated with various
temperature ratio. Under IS boundaries, the convection
current seems less easier to form than specular sidewalls.

With Kn=0.01, convection pattern is formed as rr =0.1.
However, in the other temperature ratio, rr =0.5 and
rr =0.67 , the convection current is not formed. When
rr =0.1, the convection pattern is a pair of rolls. The
centerlines are semi-paralleled to x axis. This result is
similar to specular one in the middle of z direction.
Nevertheless, the centerlines in IS condition are very
different from specular one. Figure 4 and Figure 5 show the
vertical velocity contour on middle z and velocity vector
distribution for Kn = 0.01 with IS boundary.

Under the condition of Kn=0.04 , the simulation
results are shown as Figure 6. In these convection patterns,
square cells, one can find the direction of current rises up in
the center but downwards near the lateral boundary. The
convection patterns are similar to specular one, but flow
direction are opposite with each other. In our study, we get
similar convection patterns (roll and cell) that found in
macroscopic RB convection.

Table 2 Simulation conditions with Specular sidewalls

boundary.
No. Kn rr Convection mode
1 0.01 0.1 Rolls
2 0.01 0.2 Circular Cell
3 0.01 0.67 No
4 0.04 0.1 Square Cell
5 0.04 0.016  Square Cell
6 0.04 0.005  Square Cell

Table 3 Simulation conditions with Isotropic Scattering
sidewalls boundary.

No. Kn Ir Convection mode
1 0.01 0.1 Rolls
2 0.01 0.5 No
3 0.01 0.67 No
4 0.04 0.1 Square Cell
5 0.04 0.05  Square Cell
6 0.04 0.033  Square Cell

4. Conclusions

In the present study, 3-D natural convection of rarefied
gas in rectangular enclosure has been investigated
numerically. The effects of rarefaction, temperature ratio
and side wall boundary condition on the flow pattern are
examined. Form the preliminary results obtaind, the
following conclusions can be drawn.

(1) RB convection forms square cell under the
condition Kn=0.04 both in IS and specular lateral
walls. However as Kn =0.01, in specular boundary, the
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attractor of convection pattern are different. For rr =0.1,
convection pattern is a pair of rolls which parallel to x
axis. For rr =0.2, the pattern is circular cell. Both of
them flow to bottom wall in the center and rise up near
sidewalls. In IS condition, we only find a pair of rolls as
rr =0.1. Besides, the computation results are different
between IS and specular condition.

The flow goes upward near the lateral boundary and
downward in the center under the specular sidewalls
boundary. However, in IS lateral boundary conditions,
the direction of convection current tends to be upward
in the center and downward near the sidewalls. This can
be viewed as viscous phenomena between fluid and IS
boundary. The viscous force drags fluid as it closes to
IS boundary. In the center of computation domain,
viscous effect is weaker than which in lateral. So the
fluid is easier to rise up in the center under IS boundary.
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Figure 1 Kn=0.02, Fr=3, . =0.1, and A=2. The properties distribution (maximum and minimum) along the z

direction. (a)Density;(b)Temperature;(c)horizontal velocity; and (d)vertical velocity with Specular sidewalls boundary.
Comparison of DSMC and continuum NS calculations.



(a) (b)

(c)
Figure 2 Under Specular sidewalls boundary, Kn=0.01, and Fr =3, vertical velocity contour and velocity
vector distribution for different temperature ratio. (a) I: = 0.67; (b) Ir =0.2; (c) I =0.1.

(b)

(©

Figure 3 Under Specular sidewalls boundary, Kn=0.04, and Fr =3, vertical velocity contour and velocity vector
distribution for different temperature ratio. (a) I; =0.005;(b) r; =0.016;(c) I =0.1.
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(a) (b)
Figure 4 Under IS sidewalls boundary, Kn=0.01, and Fr =3, r; =0.1 vertical velocity contour and velocity vector
distribution (a)Slice at middle z and x direction; (b) Near top, and sidewalls.

(a) (b)

Figure 5 Under IS sidewalls boundary, Kn=0.01, and Fr =3, vertical velocity contour and vector distribution for
different temperature ratio. (a) I = 0.5; (b) I, =0.67.

(b)

(©

Figure 6 Under IS sidewalls boundary, Kn=0.04, and Fr =3, vertical velocity contour and velocity vector
distribution for different temperature ratio. (a) I; =0.033; (b) I; =0.05; (c) I; =0.1.
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