INER-F0490

出國報告(出國類別:實習)

赴美國普渡大學複合材料實驗室國外 公差報告

服務機關:核能研究所 姓名職稱:蘇煒年 助理工程師 派赴國家:美國 出國期間:100年7月10日~100年8月17日 報告日期:100年9月16日

摘要

位於美國印第安納州的 Purdue University 工學院在全美排名第11名,而 航太系在全美排名第6名。本次實習研究於 Purdue University 航太系的 Composite Materials Lab 執行,由實驗室創辦人 Prof. Chin-Teh Sun 從旁指導。Prof. Sun 現 為 Purdue University 航太系 Neil A. Armstrong Distinguished Professor,專長於複 合材料、破壞力學、結構動力學、智慧型材料與結構、奈米材料等。本次國外 公差在 Purdue University 期間,針對玻璃纖維複合材料特性,以及複合 材料各種失效模式如 Fiber、Matrix、及 Laminate 破壞等的判定模式 與分析方法進行研究,以期能在將來進行風力發電機葉片設計過程中,除 了考慮氣動力效率之外,亦能掌握主要氣動力負載如 Flap-wise bending、 Edge-wise bending、及 pitching moment 等對於葉片各疊層的影響,由此改善疊層 設計,以達到提高葉片強度之目的。

目 次

摘	要	I
		1
<u> </u>	日 氏入	1
<u> </u>	過 程	3
<u> </u>	心 得	21
四、	建議事項	22

附 圖 目 錄

昌	1、彭科大 Wind Park 小型風機葉片斷裂	2
圕	2、彭科大 Wind Park 小型風機發電機與電控器損毀	2
昌	3、複合材料成分示意圖	4
昌	4、複合材料 element 應力示意圖	5
昌	5、疲勞周期測試示意圖	8
圕	6、複合材料 Viscoelastic 特性示意圖	8
圕	7、2-D 複合材料 failure criterion	9
圕	8、Wu & Scheublein Glass/Epoxy σ11-σ22 實驗數據比較	11
圕	9、σ ₂₂ -τ ₁₂ AS4/55A 實驗數據比較	12
圖	10、σ ₂₂ -τ ₁₂ T800 實驗數據比較	13
圖	11、σ22-τ12 Glass/Epoxy 實驗數據比較	14
圖	12、Direct Micromechanics Method 與其他方法之比較	15
圕	13、Fiber failure 示意圖	16
昌	14、Fiber failure stress-strain 示意圖	17
昌	15、Matrix failure stress-strain 示意圖	18
昌	16、Laminate ply-ply failure 示意圖	19
昌	17、De-lamination 示意圖	19
圕	18、De-lamination mode 示意圖	20

附表 目錄

表	1	`	纖維方向符號說明表3
表	2	•	金屬材料與 FRP 單位質量強度比較表4
表	3	•	95%信心度 K ₂ 常數列表7

一、目的

近幾年來,基於油價高漲,以及政府積極推動再生能源之使用,台灣中小企業因此 積極投入小型風力發電機之研發,目前已有不少型式之水平軸風力發電機(Horizontal Axis Wind Turbine, HAWT),以及垂直軸風力發電機(Vertical Axis Wind Turbine, VAWT) 在市場上銷售。然而,小型風機品質參差不齊,藉由澎湖科技大學 Wind Park 示範場, 以及台南七股風力發電測試場之資料顯示,小型風電幾個常見之損壞零組件分別為葉 片、發電機、以及電控器等如圖 1與圖 2所示;此外,國際上對於中大型風機之研究亦 顯示,葉片、齒輪箱、發電機、以及電控器等,在所有風機零組件中佔有相當高的損壞 比例。

小型風力發電機葉片在製程與材料選用上相當多樣化,常見的有塑膠射出成形、鋁 擠壓成形、玻璃纖維複合材料(Fiberglass Reinforced Plastic, FRP)、或碳纖維複合材料; 而一般 kW 級以上之小型風機,或中大型風機在葉片設計上,均是採用 FRP、或 FRP 參雜碳纖維複合材料,至於完全採用碳纖維複合材料之葉片,因成本過高,除了實驗用 外,並不適用於商用風機。因此,FRP 至今仍是一般風機葉片採用之主要材料。

Purdue University 工學院在全美排名第 11 名,而航太系在全美排名第 6 名。本次實 習研究即是於 Purdue University 航太系的 Composite Materials Lab 執行,並由實驗室創 辦人 Prof. Chin-Teh Sun 從旁指導。Prof. Sun 現為 Purdue University 航太系 Neil A. Armstrong Distinguished Professor,專長於複合材料、破壞力學、結構動力學、智慧型材 料與結構、奈米材料等。本次國外公差之目的即是針對玻璃纖維複合材料特性,以及 複合材料各種失效模式如 Fiber、Matrix、及 Laminate 破壞等的判定模式與 分析方法進行研究,以期能在將來進行風力發電機葉片設計過程中,除了考慮氣動 力效率之外,亦能掌握主要氣動力負載如 Flap-wise bending、Edge-wise bending、及 pitching moment 等對於葉片各疊層的影響,藉此確認葉片可能產生破壞的部位,以及相 對應之關鍵負載,由此改善疊層設計,同時在氣動力外形設計上盡可能降低該負載值, 以達到提高葉片強度之目的,以及提昇風機運轉之可靠度與穩定度。

圖 1、彭科大 Wind Park 小型風機葉片斷裂

圖 2、彭科大 Wind Park 小型風機發電機與電控器損毀

二、過 程

本次實習研究經由台灣大學工科與海洋研究所之林輝政教授推薦,選擇位於美國印 第安納州的 Purdue University 進行研究。此行於 100 年 7 月 10 日出發,並於 100 年 8 月 17 日返國,為期共 39 天。研究其間由該校航太系 Composite Materials Lab 創辦人 Prof. Chin-Teh Sun 從旁指導,並且由 Prof. Sun 安排於博士後研究生 Dr. Hsin-Haou Huang 之 辦公室進行研究。Dr. Huang 於一年多前由 Purdue University 博士班畢業後,即留於實驗 室進行博士後研究,專長於 acoustic material 與 fracture mechanics 之研究,因此,在美 期間除了由 Prof. Sun 分享過去實驗室之研究結果之外,很多複合材料相關的問題更有 Dr. Huang 熱心解答。研究重點在於複合材料特性、複合材料失效之判定方法(Failure Criterion)、以及複合材料常見之破壞模式等。

(一) 複合材料特性研究

複合材料在工程應用上已被廣泛應用,主要成分可以分為纖維(Fiber)與基材 (Matrix)如圖 3所示。玻璃纖維是最常見的纖維組成,碳纖維則屬於高強度材料常用 於航太工業,而 polymer 如 epoxy 等是最常見的 Matrix 材料。如圖 3所示,纖維在編 織上可依用途之需求而採用不同排列方向,常見的代表符號如表 1所示,以核研所 150 kW 風機(INER-P150)與 25 kW 風機(INER-C25A)葉片為例,採用的幾種玻纖布為 L900 與 DBLT800 (後面號碼代表每平方公尺之質量,如 800 表示 800 g/m²),而複合材料最 大的優點即為單位質量的強度非常高如表 2所示,經常用於輕量化需求較高的結構 件。

表 1、纖維方向符號說明表

L	0 degree
DB	±45 degree
LT	0 degree/90 degree
DBL	±45 degree/0 degree
DBLT	0/45/-45/90 degree

Material	Tensile Strength	Tensile Modulus	Specific Strength
	(MPa)	(GPa)	$(MPa/[g/cm^3])$
6061T6 Aluminum	310	69	114.4
4340 Steel	1030	200	131.5
AZ80 Magnesium	345	45	191.7
Glass fiber	3448	72	1357.5
E-glass			
Glass fiber	4830	87	1939.8
S-2 glass			

圖 3、複合材料成分示意圖

如以上所述,複合材料在材料特性上與一般金屬材料最大不同在於複合材料 Anisotropic 的特性,而金屬材料一般可以視為 Isotropic。若以圖 3材料主座標系統定 義(1-2-3 系統),則材料應力可以如圖 4所示,由 Hook's Law,應力與應變間的關係可 由式 1 表示,式中之 C 矩陣為 Stiffness Matrix,由於應力及應變對稱性之關係(如 $\sigma_{12}=\sigma_{21}$, $\epsilon_{12}=\epsilon_{21}$, $C_{12}=C_{21}$ 等),完整的 Anisotropic 材料 Stiffness Matrix 如式 2,式 2 的 inverse matrix 則稱為 Compliance Matrix。將材料參數代入 Compliance Matrix,則 Anisotropic 中一個特別的案例為 Orthotropic,應變與應力值間之關係如式 3 所示。式 3 顯示主應力(σ)與剪應力(τ)間並無耦合,因此大幅降低應力計算的複雜性,也同時減 少所需之材料參數。

$$\sigma_{ij} = C_{ij} \varepsilon_{ij} \qquad (\ensuremath{\vec{\pi}}\ensuremath{\vec{1}}\ensuremath{$$

圖 4、複合材料 element 應力示意圖

一般材料參數均是要經由測試取得,複合材料最常採用 coupon test,試片通常是 單一疊層如僅有 0°玻纖或 90°玻纖等,但實際上,因應設計需求,不同方向之疊層穿 插是常見的應用,因此,若想省略針對不同疊層設計再進行參數量測之步驟,則可以 採用比例方式,計算等效參數。以 INER-C25A 之葉片尖端疊層為例,採用 DBLT-800(簡

第5頁

寫 D)與 L-900(簡寫 L)交互相疊, DBLT-800 拉伸強度為 266.93 MPa, 而 L-900 拉伸強度為 504.32 MPa, 疊層順序為 D/L2/D/L2/D, 其中 L2 表示 L-900 兩層,因此, L-900 共有 4 層(厚度為 3.6 mm), 而 DBLT-800 共有 3 層(厚度為 2.4 mm), 疊層總厚度為 6 mm, 依照各別疊層之強度,以及厚度比例可以估算等效拉伸強度如下所示。

$$(S_t)_{equivalent} = \left[\frac{3.6}{6.0} \times 504.32 + \frac{2.4}{6.0} \times 266.93\right] = 406.36 MPa \qquad (\ddagger 4)$$

由此可見,疊層設計與分析的準確性依賴正確的材料參數。金屬材料由於 Isotropic 的特性,E₁ = E₂ = E₃=E,G₂₃=G₃₁=G₁₂=G,反觀複合材料,由於 Anisotropic 的特性,每個方向的材料參數都不同,Prof. Sun 依據過往經驗與研究結果,建議至少需量測 1-2 方向的參數,而且採用 90-95%信心度原則(confidence level),與 IEC 標準建議的 95% confidence 雷同。量測上建議採用統計方式,亦即取樣平均值(式 5)與取樣標準差(式 6),樣品數 n 至少為 5,則 95%信心度之特性參數 R_k可由式 7 獲得,式中的常數 k₂ 如表 3所示。假設量測值 x 為拉伸強度,由式 7 與表 3可看出,當測試樣品數越多,而且取樣標準差越小,則平均值的修正越小,此外,表 3中的 n 值是從 5 開始,也代表至少要測試 5 個樣品。

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(x_{i} - \bar{x} \right)^{2}$$

$$(\vec{x}, 6)$$

$$R_k = x - k_2 s \tag{\vec{x} 7}$$

No. of Samples (n)	k ₂
5	4.21
6	3.71
7	3.4
8	3.19
9	3.03
10	2.91
11	2.82
12	2.74
13	2.67
14	2.61
15	2.57
20	2.4
50	2.07
100	1.93
> 100	1.645

表 3、95%信心度 k2常數列表

複合材料在疲勞量測上常會只測試 R = -1 之疲勞曲線, R 代表最小值與最大值之 比如式 8 所示, 不同 R 值的周期示意圖如圖 5所示。Prof. Sun 建議除了 R = -1 之外, 盡可能也能涵蓋 R = 0.1, 0.5, 2, 及 10, 如此在計算葉片疲勞強度時的誤差較小。

$$R = \frac{S_{\min}}{S_{\max}} \tag{($\mathbb{T}^{k}_{\vee} 8)}$$

最後,複合材料屬於 Viscoelastic 材料,其特性如圖 6所示,(a) 在固定 Stress 下, Strain 值會隨時間變化 (creep phenomena),(b) 在固定 Strain 下,Stress 值會隨時間變 化 (relaxation phenomena),(c) 具有記憶特性,亦即 Strain 值會因先前的 Stress 軌跡 不同而異,(d) Stress 值會因 Strain rate 的不同而異。

Time

(c) Hysteresis loop due to cyclic stress

(b) Relaxation under constant strain

圖 6、複合材料 Viscoelastic 特性示意圖

(二) 複合材料失效判定方法

一般 Isotropic 材料在破壞判定上常見的是 Maximum principle stress 與 von Mises stress (或 equivalent stress) (式 9)。相同地,針對複合材料,專家學者至今也提出多種 強度 判斷的分析方法。本次研究主要針對用於連續纖維材料 (Continuous Fiber-Reinforced)的方法,常見於工程應用上的有: Maximum stress criterion、Maximum strain criterion、Tsai-Hill criterion、以及 Tsai-Wu criterion 等如圖 7所示。

圖 7、2-D 複合材料 failure criterion

Maximum stress criterion (式 10)主要是針對 Orthotropic 材料,相似於 Isotropic 材料所使用的 Maximum Normal Stress Theory。如圖 7所示,S_L為主應力方向的拉伸強度(+)與壓縮強度(-),而 S_T為剪切強度,由這些材料參數在 1-2 平面定義矩形的 Failure Surface,當材料應力落於 Failure Surface 以外,則判定材料失效。

$$-S_{L}^{(-)} < \sigma_{1} < S_{L}^{(+)}$$
$$-S_{T}^{(-)} < \sigma_{2} < S_{T}^{(+)}$$

$$\tau_{12} | < S_{LT} \tag{\vec{x} 10}$$

Maximum strain criterion (式 11)主要也是針對 Orthotropic 材料,相似於 Isotropic 材料所使用的 Maximum Normal Strain Theory。由式 12 在 1-2 平面上的交點為(+S_L,0),以及由式 13 在 1-2 平面上的交點為(0,+S_T),因此,Maximum strain criterion 在 1-2 平面定義平行四邊形的 Failure Surface,當材料應力落 e 於 Failure Surface 以外,則判定材料失效。

$$-e_L^{(-)} < \mathcal{E}_1 < e_L^{(+)}$$

$$-e_{T}^{(-)} < \mathcal{E}_{2} < e_{T}^{(+)}$$

$$\left|\gamma_{12}\right| < e_{LT} \tag{$\frac{1}{2}$}$$

$$\sigma_2 = \frac{\sigma_1 - S_L^{(+)}}{\nu_{12}} \tag{($\mathbb{T}\)} 12)$$

$$\sigma_2 = v_{12} \sigma_1 + S_T^{(+)} \tag{\mathbb{T}} 13)$$

Tsai-Hill criterion (式 14)屬於 Quadratic Interaction Criterion,並且是由 von Mises criterion 所衍生而來。不像 Maximum stress 與 Maximum strain criteria, Tsai-Hill 考慮 各方向應力間的交互作用,式中的 A~F 均為常數,必須由各方向之 yielding strength (Y) 計算而來 (式 15 至式 17),因此,在應用上需要投入較多之量測。Tsai-Hill criterion 在 1-2 平面橢圓形的 Failure Surface,當式 14 大於 1 時,則判定材料失效。

$$A(\sigma_2 - \sigma_3)^2 + B(\sigma_3 - \sigma_1)^2 + C(\sigma_1 - \sigma_2)^2 + 2(D\tau_{23}^2 + E\tau_{31}^2 + F\tau_{12}^2) = 1 \qquad (\vec{x}, 14)$$

$$B + C = \frac{1}{Y_1^2}, A + C = \frac{1}{Y_2^2}, A + B = \frac{1}{Y_3^2}$$
 (\vec{x}_1 15)

$$2A = \frac{1}{Y_2^2} + \frac{1}{Y_3^2} - \frac{1}{Y_1^2}, \ 2B = \frac{1}{Y_3^2} + \frac{1}{Y_1^2} - \frac{1}{Y_2^2}, \ 2C = \frac{1}{Y_1^2} + \frac{1}{Y_2^2} - \frac{1}{Y_3^2}$$
($\mathbb{F}_{1}^{\mathsf{L}}$ 16)

$$2D = \frac{1}{Y_{23}^2}, 2E = \frac{1}{Y_{31}^2}, 2F = \frac{1}{Y_{12}^2}$$
(\overrightarrow{x} 17)

相似於 Tsai-Hill criterion, Tsai-Wu criterion (式 18)亦屬於 Quadratic Interaction Criterion。式 18 一般可以簡化為平面應力如式 19 所示,式中常數也必須由測試計算 而來(式 20 與 21)。

$$F_i \sigma_i + F_{ij} \sigma_i \sigma_j = 1, i, j = 1, 2, ...6$$
 (z 18)

$$F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\sigma_6^2 + F_1\sigma_1 + F_2\sigma_2 = 2F_{12}\sigma_1\sigma_2 = 1$$
 (#19)

第 10 頁

$$F_{11} = \frac{1}{S_L^{(+)} S_L^{(-)}}, F_1 = \frac{1}{S_L^{(+)}} - \frac{1}{S_L^{(-)}}$$
(\vec{x} 20)

$$F_{22} = \frac{1}{S_T^{(+)}S_T^{(-)}}, F_2 = \frac{1}{S_T^{(+)}} - \frac{1}{S_T^{(-)}}, F_{66} = \frac{1}{S_{LT}^2}$$
(72)

應用以上所討論之 criteria,比較 Prof. Sun 所提供之實驗數據(圖 8至圖 11),可 以得到以下幾個初步結論:(1)如果主要是因為 Fiber 失效,則 Maximum stress 與 Maximum strain criteria 有較準確之預測結果,而且這兩種 criteria 對於 matrix 強度的 變化並不敏感,(2)當 σ₁₁存在時,Maximum strain criterion 不適合用來預測 transverse matrix cracking,(3)如果材料強度是由 matrix 強度所主導,則 Tsai-Hill 與 Tsai-Wu 這 兩種 quadratic criteria 的預測結果之準確性必須仰賴準確的材料量測強度,(4)材料的 transverse 參數,以及剪切參數對於準確預測失效相當關鍵。

圖 8、Wu & Scheublein Glass/Epoxy σ11-σ22 實驗數據比較

圖 9、σ₂₂-τ₁₂ AS4/55A 實驗數據比較

圖 10、σ₂₂-τ₁₂ T800 實驗數據比較

圖 11、σ22-τ12 Glass/Epoxy 實驗數據比較

如以上所述, Maximum stress、Maximum strain、Tsai-Hill、以及 Tsai-Wu 等為常應 用在預測失效的判定方法, 然而除此之外, 尚有如 Puke's criteria、Hashin-Rotem、modified Tsai-Wu criteria等方法, 而更複雜的方式則是應用 Direct Micromechanics Method 如圖 12 比較圖所示。由於時間有限, 無法完全加以了解, 只能由 Prof. Sun 簡略介紹。

圖 12、Direct Micromechanics Method 與其他方法之比較

(三) 複合材料失效模式

Fiber failure 在保守的定義上是指第一根 Fiber 斷掉的情況發生,然而 在實際應用上則相當的難以判定,因為,疊層在舖疊與製造過程中,纖維 難免受損或已斷裂,如圖 13所示,疊層受力時,每一纖維產生變形,因 此,可以將纖維以彈簧表示,用以計算各自受力,當纖維斷裂數達到 critical fraction時,此時,若疊層為 fiber dominant,則疊層就會斷裂, 若疊層為 Matrix dominant,則最後便由 Matrix 決定斷裂時機如圖 14所 示。如前所述, Maximum strain 是常被用來判斷 Fiber failure 的 criterion, 其他如 Tsai-Hill 與 Tsai-Wu 等 criterion,若 Matrix 的量測參數不確定性 低,則這兩種 criteria 也是常用來判定 Fiber failure 之方式。

圖 13、Fiber failure 示意圖

圖 14、Fiber failure stress-strain 示意圖

Matrix failure 在定義上以 Matrix 產生 crack 為準,若是 Fiber dominant 的疊層設計,在 Matrix 失效後,則由 Fiber 強度來決定疊層斷裂時機如圖 15所示。如前所述,Tsai-Hill 與 Tsai-Wu 這兩種 quadratic criteria 對於 Matrix 的強度相當敏感,用來預測 Matrix failure 的結果不確定性較高,因此,針對 Matrix failure 的判斷,常用的方法為 Maximum stress criterion。

圖 15、Matrix failure stress-strain 示意圖

Laminate failure 的發生情況主要有兩種:(1)單一疊層逐一破壞失效 如圖 16所示,(2)疊層與疊層間剪切破壞(inter-laminar failure)如圖 17所 示。針對(1)的情況,每一個疊層可能因 Fiber 或 Matrix 破壞而失效,當 疊層逐一破壞至整體疊層完全失效,因此,在判斷上必須應用 Fiber failure 與 Matrix failure 的 criterion 交互對照,才能準確判斷 Laminate failure。 針對(2)的情況,常用的是把疊層當作 Matrix,而以 Matrix crack 的成長至 critical 比例做為失效的判斷,而破壞的模式與 Fracture Mechanics 所定義 的相同如圖 18所示 Mode I、II、及 III。

圖 16、Laminate ply-ply failure 示意圖

圖 17、De-lamination 示意圖

圖 18、De-lamination mode 示意圖

三、心 得

本所進行風力發電相關技術之研發已有多年時間,從 25 kW 風機的研發,一直到完成 150 kW 風機的開發與架設。本人也已參與第一代至第三代 25 kW 風機葉片之設計,以及 150 kW 風機葉片之設計,過程中對於 FRP 的特性與正確的分析方式並無深入研究,更是經常以分析 Isotropic 材料的方法直接應用在複合材料上。藉由此次 Prof. Sun 與 Dr. Huang 的指導,以及實際的練習,對本人獲益良多,大致上可彙整如下:

- 複合材料屬於 Anisotropic 材料,每一方向之材料參數均不相同,但若能在疊層 設計上已對稱性設計,則可以減少 independent 參數的數量。
- 複合材料 coupon test 是分析準確性不可或缺的資訊,在量測上應確實採用 95% 信心度原則(confidence level),而且樣品數至少為 5。
- 如果複合材料為 Fiber dominant,則 Maximum stress 與 Maximum strain criteria 有較準確之預測結果,而且這兩種 criteria 對於 matrix 強度的變化並不敏感, 但 當 σ₁₁存在時, Maximum strain criterion 不適合用來預測 transverse matrix cracking。
- 4. 如果複合材料為 matrix dominant,則 Tsai-Hill 與 Tsai-Wu 這兩種 quadratic criteria 的預測結果之準確性必須仰賴準確的材料量測強度。
- 5. 複合材料的失效模式相當複雜,在分析上必須應用不同 criterion 交互使用,以 確認 Fiber、Matrix、或 Laminate 失效的發生。

最後,經由本次的機會,能有機會深入了解複合材料的各種相關問題,更正以往錯 誤的分析觀念與方式,同時對於複合材料參數的量測有更進一步的認識,並且對於材料 參數在複合材料失效判斷上各種影響有深可的認知。

四、建議事項

- (一)、如報告所討論,複合材料與一般金屬材料在材質上有很大的差異性,材料參數的 取得仰賴可靠的材料測試,而一般均只量測 longitudinal 的材料參數,若要獲得準 確的失效預測,則材料的 transverse 參數,以及剪切參數亦是相當關鍵的量測參 數,有鑑於此,建議將來在葉片設計與製作上,coupon test 應確實執行,並且依 循 95% confidence 的標準,除了量測 longitudinal 的材料參數之外,若在設備條件 許可下,也應盡可能量測材料的 transverse 參數,以及剪切參數,而且至少進行 5 個樣品數的量測。
- (二)、如同金屬材料有 Maximum principal stress 與 von Mises stress criteria 一樣,複合材 料也有各種不同的判斷 criteria,然而在實際應用上,仍必須對於每種 criteria 所適 用的條件有正確的認識,最重要的是經驗的累積。風機設計團隊中相當缺乏專精 複合材料的成員,因此,建議多與專家合作,不斷累積技術與經驗。