Establishment of Port Air Pollutant Emissions Inventory

Chia-Hsiu Liang, Project Manager SimEnvi Environmental Simulation Co. Ltd.

July 12, 2011

DOULOS

VALLETTA

Administration

Invironmental Protection Secutive Yuan, R.O.C.

1001000100100100100

リレン PC 1袋 見 本 i 皮 子 nvironmental Protection Administra xecutive Yuan, R.O.G. (Taiwan)

1. Introduction

Project Objectives

- Establishment of Port Air Pollutant Emissions Inventory
- Draw up the action plan for port air cleaning and propose suggestions on port air pollutants management to reduce emissions
- Investigate the experience of related strategies in the U.S. and apply those experiences to our project.
 - the Puget Sound Maritime Air Emissions Inventory
 the San Pedro Bay Ports Clean Air Action Plan

1. Introduction

Scope of the Project

- Establishment of Port Air Pollutant Emissions Inventory
 - Build the Port Air Pollutant Emissions Inventory, which sets year 2009 as the baseline, and forecast the emission amount from 2010 to 2021 accordingly.
 - The ports include Keelung Harbor, Taichung Harbor, Kaohsiung Harbor and Hualien Harbor (Next year to include Taipei Harbor).
 - The categories of air pollutants include $NO_X \cdot VOC \cdot CO \cdot SO_2 \cdot PM_{10} \cdot PM_{2.5} \cdot DPM$ and the equivalent amount of GHG emissions.
 - The emission sources include Ocean-going vessels, Harbor vessels, Rail locomotives, Cargo handling equipment, Heavy-duty vehicles, and Fugitive pollutant sources.

1. Introduction

Scope of the Project

- Draw up an action plan and propose suggestions on port air pollutant management to reduce emissions.
 - Collect air pollutant management technologies and draft the best available control technologies (BACT) and the port air cleaning action plan.
 - Hold conferences and invite related experts, organizations, port administrators, industry and environmental protection agencies to collect suggestions.
 - Set up the communication channel with U.S. EPA.
 - Analyze the correlation between port air pollutant emissions and the air pollution management strategies by using the emission inventories of this project, and propose future management strategies.
 - Collect literature about the effect of sea/land breezes and vessel pollution on quality of air over land and conduct an integrated evaluation on Kaohsiung port as the evaluation subject.

Locations of the Ports

Emission Estimate Methods

Emission Estimate for Base Year

- Ocean-going Vessels, Harbor Crafts, Cargo Handling Equipment, Rail, Heavy Vehicles: adopt the methods used in Puget Sound Maritime Air Emissions Inventory, U.S.A., 2007, and other technical literature
- Fugitive particles: adopt methods used by relevant studies in Taiwan

Emission Estimate from Year 2010 to 2021

Estimate based on the development plans for each harbor, predicted volume of freight handled and the control measures developed in this project

Emission Estimate Methods

Sources	Geographical extent	Methods
Ocean-going Vessels	Port area and maritime area within 20 nm	Ship calls collected from each harbor bureau and ship data are consulted on Lloyd's ship register data. Emissions are then estimated as a function of vessel power demand multiplied by an emission factor.
Harbor Vessels	Port area and nearby maritime area	Harbor vessel data are collected from each harbor bureau. Annual hours of use in 2009 within each port area were used to calculated harbor vessel emissions.
Cargo Handling Equipment	Port area only	Cargo Handling Equipment data are collected from each harbor bureau and terminal operators. Emissions are estimated using the NONROAD model with modification for local parameters.
Rail Locomotives	Port area only	Locomotive operational data are collected from the railway administration. Emissions are estimated with power demand multiplied by an emission factor.
Heavy-duty Vehicles	Port area only	Vehicles and journey data are collected from each harbor bureau and terminal operators. Emission factors are estimated using the Mobile-Taiwan model.

OGVs Emissions Estimation Flow Diagram

Statistics of 2009 OGV calls by vessel type

Unit: call

Vessel Type	Keelung Harbor	Kaohsiung Harbor	Hualien Harbor	Taichung Harbor
Passengers	153	125	3	42
Passengers & Cargoes	312	244	—	19
Containers	3,783	8,102	—	3,059
Reefer	3	130	—	—
Grains	2	26	—	50
Oil Tankers	227	2,631	40	553
Ore	6	37	—	4
Coal	1	150	2	114
Lumber	—	—	—	—
Bulk	1,337	1071	644	787
General Cargo	1,022	3,319	1,444	977
Other	177	1,694	103	701
Total	7,023	17,529	2,236	6,306

Volumes of freight handled for main international ports in Taiwan

Source: Ministry of Transportation and Communication, 2010

Ports 2009 Air Emissions Inventory Summary

								(Jnit: MI/Year
Port	Sources	NO _x	VOC	CO	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO _{2EQ}
Keelung Harbor -	Ocean-going vessels	3952.8	133.5	322.9	3263.5	258.2	203.3	192.1	246048.2
	Harbor vessels	76.7	1.7	15.2	13.0	1.9	1.7	1.9	4349.4
	Cargo handling equipment	11.5	0.8	2.8	0.0	0.5	0.5	0.5	1275.4
	Rail	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Heavy-duty vehicles	29.6	4.4	19.5	0.1	1.7	1.5	1.7	2059.8
	Total	4070.6	140.3	360.4	3276.5	262.4	207.1	196.2	253732.7
Taichung Harbor -	Ocean-going vessels	2667.1	99.2	229.7	2800.1	202.7	157.9	118.3	215043.9
	Harbor vessels	95.0	2.7	30.7	20.9	3.0	2.8	3.0	6964.3
	Cargo Handling equipment	59.1	4.6	31.6	0.3	4.7	4.6	4.7	8493.4
	Rail	3.2	0.2	0.5	0.0	0.1	0.1	0.1	207.8
	Heavy-duty vehicles	322.1	50.9	207.5	0.6	18.4	16.2	18.4	23982.4
	Total	3146.4	157.5	500.0	2821.9	228.9	181.6	144.6	254691.7

1001000100100100100

Ports 2009 Air Emissions Inventory Summary (continued)

Unit: MT/Year

Port	Sources	NO _x	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}	DPM	CO _{2EQ}
Kaohsiung Harbor	Ocean-going vessels	8499.9	343.7	756.6	8073.8	627.3	491.5	420.6	585367.2
	Harbor vessels	249.8	7	83.2	54.7	7.8	7.2	7.8	18190.3
	Cargo handling equipment	59.3	4.5	30.8	0.2	4.6	4.5	4.6	7879.2
	Rail	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Heavy-duty vehicles	482.5	72.9	329.3	0.8	28.8	25.5	28.8	32088.4
	Total	9291.4	428.1	1200.0	8129.5	668.5	528.7	461.8	643525.1
Hualien Harbor	Ocean-going vessels	679.2	24.4	57.4	511.6	42.7	33.7	32.9	41479.7
	Harbor vessels	38.9	0.9	7.9	6.1	1.0	0.9	1.0	2308.9
	Cargo Handling equipment	14.3	1.3	9.4	0.1	1.4	1.4	1.4	1967.4
	Rail	18.6	1.1	3.1	0.0	0.7	0.6	0.7	1218.9
	Heavy-duty vehicles	43.4	6.4	28.6	0.1	2.6	2.3	2.6	3016.9
	Total	794.4	34.0	106.4	517.9	48.3	38.9	38.5	49991.9

Emission estimates results in the 4 harbors of Taiwan for year 2009

- NOx and SO₂ are the main pollutants. Emission amounts in Kaohsiung Harbor are the highest and are consistent with the volume of freight handled
- The main GHG is CO₂. The emissions of N₂O and CH₄ are rare. Kaohsiung Harbor has the highest level of GHG emissions.
- The main NOx emission from Kaohsiung Harbor is Ocean-Going-Vessels (OGV).

NOx emission from Kaohsiung Harbor

4. Future Plan

- This project will include Taipei harbor in the port air emissions inventory in the second year.
- Methodologies used in the first year will be discussed and modified to improve the emission estimates.

5. Conclusion

- This project estimates the emissions from Keelung, Taichung, Kaohsiung and Hualien Harbors and establishes detailed emission inventory data. The results would help to understand the composition of air pollutants from these port areas and help to construct the port control strategies.
- The results also showed that Kaohsiung harbor has the largest emissions, followed by Keelung and Taichung harbors, and Hualien harbor has the least emissions.
- Ocean going vessels are the major sources of all four ports. Transit within 20 nm from port emitted almost the same amount of pollutants as maneuvering and hotelling within port area. This Implies that control measures on OGVs within 20 nm from port are among important strategies.
- Harbor vessels and Heavy duty vehicles are the other two major sources except OGVs. Cargo handling equipment emitted only less emission since large cranes have been electrified. Locomotives has the least emission since only trivial lines are still working at two ports and none at the others.

Thank You!

