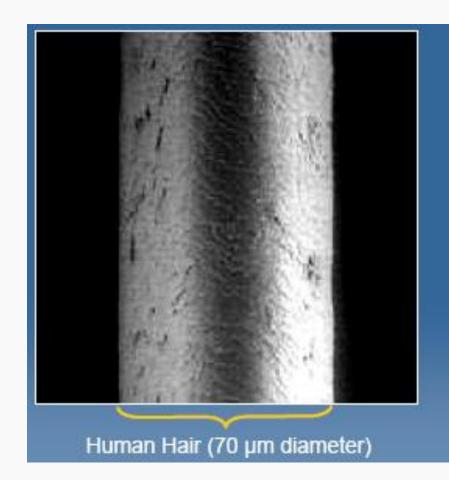
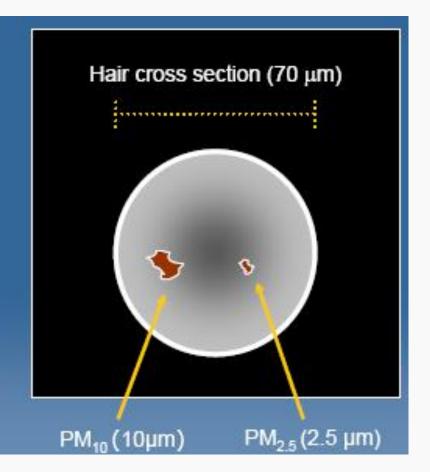
Emissions Inventories at U.S. Ports

Penelope McDaniel
U.S. Environmental Protection Agency
July 12, 2011
Hong Kong




Presentation Outline

- Introduction
- Impetus: protect human health & the environment
- US EPA air quality regulations overview
 - CAA, mobile sources
- US Port Emission Inventories & Progress

Protecting Human Health & the Environment

Protecting Human Health & the Environment

- Exposure to diesel PM may result in both cancer and non-cancer health effects, including premature death
 - US EPA has classified PM_{2.5} as a likely human carcinogen
 - Non-cancer health effects may include eye and lung irritation, allergic reactions in the lungs, asthma exacerbation, blood toxicity, immune system dysfunction, and developmental disorders.
- NOx adverse health effects in humans: respiratory irritation, immune system suppression, and asthma exacerbation.

Protecting Human Health & the Environment

- Children, elderly and immune compromised individuals are disproportionately affected by diesel emissions
- Children are especially sensitive because their respiratory systems are still developing, and they have a faster breathing rate
- Degrades air quality, impairs visibility and contributes to climate change

Summary of Health Effects

POLLUTANT	HEALTH EFFECTS	EXAMPLES OF SOURCES
Particulate Matter (PM2.5 and PM10: less than or equal to 2.5 or 10 microns, respectively)	Hospitalizations for worsened heart diseases Emergency room visits for asthma Premature death	 Cars and trucks (especially diesels) Fireplaces, woodstoves Windblown dust from roadways, agriculture and construction
Ozone (O3)	 Cough, chest tightness Difficulty taking a deep breath Worsened asthma symptoms Lung inflammation 	 Precursor sources*: motor vehicles, industrial emissions, and consumer products
Carbon Monoxide (CO)	Chest pain in heart patients** Headaches, nausea** Reduced mental alertness** Death at very high levels**	 Any source that burns fuel such as cars, trucks, construction and farming equipment, and residential heaters and stoves
Nitrogen Dioxide (NO2)	 Increased response to allergens 	See carbon monoxide sources
Toxic Air Contaminants	 Cancer Chronic eye, lung or skin irritation Neurological and reproductive disorders 	 Cars and trucks (especially diesels) Industrial sources, such as chrome platers Neighborhood businesses, such as dry cleaners and service stations Building materials and products

US Mechanisms to Reduce Air Pollution

- Laws and Regulations
 - Federal (Congress, US EPA); State and Local; International Treaties
- Voluntary
 - Industry
 - Environmental and public health concerns, social responsibility, economic incentives, competition
- Combined regulatory and voluntary
 - Collaboration between regulators and industry

Laws & Regulations – Federal Clean Air Act

The Clean Air Act does not specifically regulate marine ports. However:

- Ambient air quality standards:
 - (1) drive Federal, State, and Local regulations, and
 - (2) create incentives for both government and industry to reduce emissions
- Mobile source standards apply to some elements of port activities and help reduce emissions

Laws & Regulations – Federal Clean Air Act

Clean Air Act

- US EPA establishes National Ambient Air Quality Standards (NAAQS)
 - "ambient air quality" includes pollution from <u>all</u> sources
- 2) US EPA approves State/local programs that meet Clean Air Act requirements joint enforcement
- 3) "Stationary sources" regulated differently from "mobile sources"

Laws & Regulations – Federal Clean Air Act

National Ambient Air Quality Standards (NAAQS): Levels of "acceptable" ambient pollutant concentrations

- 1) carbon monoxide (CO)
- 2) sulfur dioxide (SO2)
- 3) nitrogen dioxide (NO2)
- 4) ozone (O3)
- 5) particulate matter (PM10 and PM2.5), and
- 6) lead (Pb)
- Based on ambient air monitoring data, US EPA designates all areas in the U.S. as "attainment" or "nonattainment"
- Continuous monitoring: designation may change

US EPA's Mobile Source Regulatory Roadmap

Tier 2 Light-Duty

final rule 1999 fully phased in 2009 Diesels held to same stringent standards as gasoline vehicles

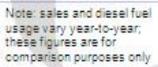
Heavy-Duty Highway

sales 800,000 / yr 40B gallons / yr final rule 2000 fully phased in 2010

Nonroad Diesel

sales over 650,000 / yr 12B gallons / yr final rule 2004 fully phased in 2015

Locomotive/Marine


sales 40,000 marine engines, 1,000 locomotives / yr 6B gallons / yr final rule 2008 fully phased in 2017

Ocean Going Vessels

CAA Rule Dec 2009 IMO MARPOL Annex VI ECA Controls

- Fuel Based 2015
- SCR Catalyst Based 2016

Federal & California Non-Road Diesel Fuel Standards

LSD & ULSD Implementation Schedule

Non-road Diesel Fuel Standards

Who	Covered Fuel	2006	2007	2008	2009	2010	2011	2012	2013	2014
Large Refiners &	NON-ROAD	500+	500	500	500	15	15	15	15	15
Importers		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Large Refiners &	LOCOMOTIVE & MARINE	500+	500	500	500	500	500	15	15	15
Importers		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Small Refiners & Other Exceptions	NON-ROAD, LOCOMOTIVE & MARINE	500+ ppm	500+ ppm	500+ ppm	500+ ppm	500 ppm	500 ppm	500 ppm	500 ppm	15 ppm

Except in California, compliance dates for Non-Road, Locomotive and Marine fuels in the years indicated are: June 1 for refiners and importers, August 1 downstream from refineries through fuel terminals, October 1 for retail outlets, and December 1 for in-use.

In California, all diesel fuel transitioned to ULSD in 2006. Locomotive and Marine diesel fuels were required to transition to 15 ppm ULSD effective January 1, 2007.

US Port Emissions Inventories

- Used to establish air quality "baseline" for port operations
- May also play roles in measuring emission reduction program success
- Frequency of updates varies, depending on data needs, funding and staffing

San Pedro Bay Ports Clean Air Action Plan Objectives

1. San Pedro Bay Specific Objectives

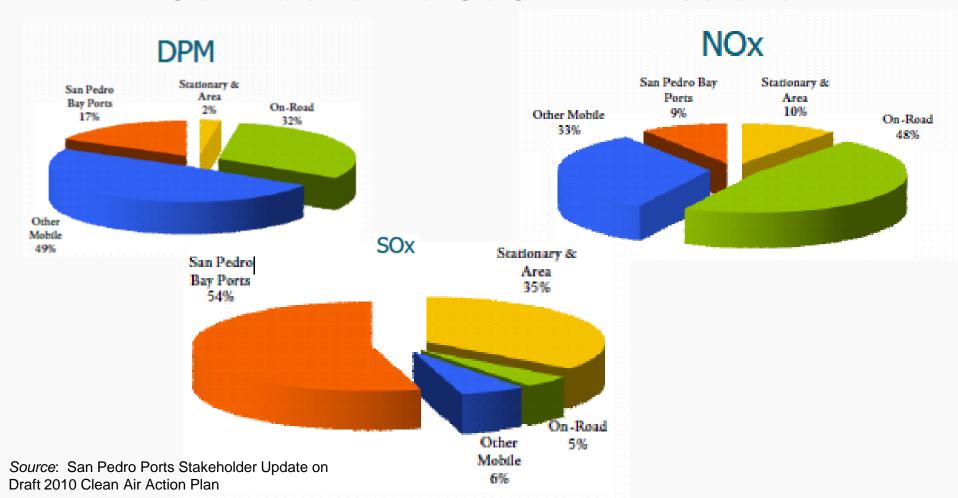
- Reduce public health risk from toxic air contaminants associated with port-related mobile sources to acceptable levels.
- Reduce criteria pollutant emissions to the levels that will assure that port related sources decrease their "fair share" of regional emissions.
- Prevent port-related violations of the state and federal air quality standards.

2. Project Specific Objectives

- Projects must meet a residential cancer risk threshold.
- Projects that exceed thresholds for criteria pollutants must implement the maximum available controls and feasible mitigations for any emissions increases.

3. Source Specific Objectives

A series of performance goals for each of the five sectors.



San Pedro Bay Ports Clean Air Action Plan Emission Reduction Initiatives

- Heavy-duty truck control measures
- OGV control measures
- Cargo handling equipment control measures
- Rail locomotive control measures
- Construction activities BMPs
- Technology Advancement Program
- Zero Emission Container Movement
- Operational efficiency improvement initiatives
- Continual improvement in El

2008 San Pedro Bay Ports – Contribution to SoCAB Emissions

Port of Los Angeles

- Activity based emissions inventory
- 2001 inventory published July 2005
- 2003 inventory published 2007, first of annual updates
- 2006 inventory published 2008, first to include greenhouse gas emissions estimates
- 2008 inventory released December 2009

Port of Los Angeles: Inventory Source Categories

- Ocean-going vessels
- Harbor craft
- Cargo handling equipment
- Railroad locomotives
- Heavy-duty vehicles

Port of Los Angeles: Pollutant Emissions Estimated

- Particulate matter (PM) (10-micron, 2.5-micron)
- Diesel particulate matter (DPM)
- Oxides of nitrogen (NOx)
- Oxides of sulfur (SOx)
- Hydrocarbons (HC)
- Carbon monoxide (CO)

Port of Los Angeles: Greenhouse Gas Emissions Estimated

- Carbon dioxide (CO2)
- Methane (CH4)
- Nitrous oxide (N2O)

Port of Los Angeles: Geographical Extent

- emissions from all source categories within the harbor district;
- emissions from rail locomotives and on-road trucks transporting cargo to or from the Port up to the cargo's first point of rest within the South Coast Air Basin (SoCAB) or up to the basin boundary, whichever comes first; and
- emissions from commercial marine vessels within the harbor and up to the study area boundary.

Figure E3.2: OGV Inventory Geographical Extent

Port of Los Angeles: Emission Inventory Results

Table ES.4: Port-wide Emissions Comparison, tons per year and % Change

EI Year	PM_{10}	PM _{2.5}	DPM	NO _x	SO_x	CO	НС
2009	511	436	467	11,244	2,432	2,777	599
2008	805	690	736	15,577	3,822	3,826	811
2007	777	673	682	17,052	3,553	4,036	875
2006	1,140	975	1,040	19,262	6,026	4,658	981
2005	1,062	908	974	16,812	5,552	4,093	870
Previous Year (2009-2008)	-37%	-37%	-37%	-28%	-36%	-27%	-26%
CAAP Progress (2009-2005)	-52%	-52%	-52%	-33%	-56%	-32%	-31%

Port of Long Beach

- Activity based emissions inventory
- 2002 baseline inventory published 2005
- Inventories published for 2005, 2006, 2007, 2008
- 2006 inventory published June 2008, first to include greenhouse gas emissions estimates
- 2009 inventory released June 2010

Port of Long Beach: Inventory Source Categories

- Ocean-going vessels
- Harbor craft
- Cargo handling equipment
- Railroad locomotives
- Heavy-duty vehicles

Port of Long Beach: Pollutant Emissions Estimated

- Particulate matter (PM) (10-micron, 2.5-micron)
- Diesel particulate matter (DPM)
- Oxides of nitrogen (NOx)
- Oxides of sulfur (SOx)
- Hydrocarbons (HC)
- Carbon monoxide (CO)
- Carbon dioxide (CO2)
- Methane (CH4)
- Nitrous oxide (N2O)

Port of Long Beach: Geographical Extent

- emissions from all source categories within the harbor district;
- emissions from rail locomotives and on-road trucks transporting cargo to or from the Port up to the cargo's first point of rest within the South Coast Air Basin (SoCAB) or up to the basin boundary, whichever comes first; and
- emissions from commercial marine vessels within the harbor and up to the study area boundary.

Figure E3.2: OGV Inventory Geographical Extent

Port of Long Beach: Emission Inventory Results

Table ES.6: Port-wide Emissions Comparison, tpy and % Change

EI Year	PM_{10}	PM _{2.5}	DPM	NO_x	SO_x	со	НС
2005	1,085	915	977	15,588	6,740	3,215	779
2009	543	453	471	10,129	3,661	1,819	483
Change (tpy)	-542	-462	-507	-5,459	-3,079	-1,396	-295
Change (%)	-50%	-51%	-52%	-35%	-46%	-43%	-38%

Proposed San Pedro Bay Ports Emission Reduction Standards

- By 2014, reduce emissions by:
 - 72% DPM
 - 22% NOx
 - 93% SOx
- By 2023, reduce emissions by:
 - 77% DPM
 - 59% NOx
 - 93% SOx

San Pedro Bay Ports Zero Emission Container Movement Systems (ZECMS)

- Short-term goal
 - determine if ZECMS are feasible for the ports and if so, demonstrate innovative technologies that can be utilized for more efficient and greener movement of cargo
- Long-term goal
 - to be able to handle anticipated cargo throughput growth with pollution-free technologies and strategies

Northwest Ports Clean Air Strategy

Port of Seattle, Port of Tacoma, Port of Metro Vancouver

Objectives:

- Reduce maritime and port-related air quality impacts on human health, the environment, and the economy
- Reduce contribution to climate change through co-benefits associated with reducing air quality impacts
- Help the airshed continue to meet air quality emissions regulations and goals

Puget Sound Maritime Emissions Inventory

- Identifies and quantifies pollutants emitted from maritime-related diesel equipment operating within the greater Puget Sound region.
- Baseline inventory covers 2005 emissions
- Update now underway for 2011 emissions

Puget Sound Maritime Emissions Inventory

- Ocean-going vessels
- Harbor vessels
- Cargo handling equipment
- Rail
- Heavy-duty vehicles
- Fleet vehicles (passenger cars & trucks)

Puget Sound Maritime Emissions Inventory: Emissions Estimated

- Carbon monoxide (CO)
- Oxides of nitrogen (NOx)
- Oxides of sulfur (SO2)
- Volatile organic compounds (VOC)
- Particulate matter (PM)
- Carbon dioxide (CO2)
- Methane (CH4), and
- Nitrous oxide (N2O)
- Diesel particulate matter (DPM)

Georgia Whistler Basin Merrit Campbell River Powell River Squamish Courtenay Sonit of Gungin Vancouver Hope Nanaimo Bellingham Sind of Juan de Fuca Victoria Sound Pacific Port Angeles Everett Ocean Seattle Tacoma

0 20 40 60 Kilometers

Olympia

Figure O.1: Georgia Basin/Puget Sound Airshed

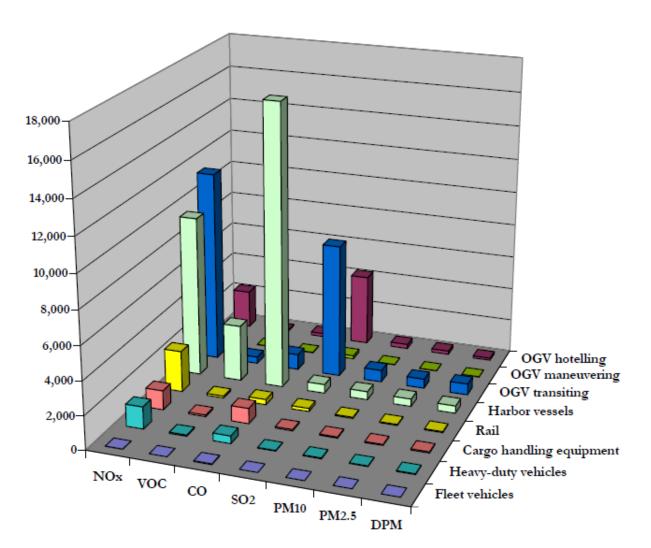

Puget Sound Maritime Emissions Inventory: Results

Table ES.3: Puget Sound 2005 Maritime Air Emissions Inventory Summary, tpy

Source Category	NOx	voc	со	SO_2	PM_{10}	PM _{2.5}	DPM	Greenhouse Gases, CO ₂ eq
Ocean-going vessels:								
Hotelling	2,259	74	191	4,229	262	209	131	274,421
Maneuvering	313	24	33	191	22	17	21	12,481
Transiting	11,390	399	932	7,953	709	566	663	496,844
Harbor vessels	9,555	3,363	16,854	529	495	456	445	689,649
Rail, off-terminal	1,285	57	166	96	35	32	32	59,854
Rail, on-terminal	1,180	67	154	93	35	32	35	48,135
Cargo handling equipment	1,155	103	918	80	74	72	74	111,592
Heavy-duty vehicles, off-terminal	1,120	58	307	35	45	39	39	156,242
Heavy-duty vehicles, on-terminal	203	18	148	4	4	4	4	17,845
Fleet vehicles	10	5	50	0	0	0	0	3,365
Total	28,469	4,167	19,752	13,211	1,682	1,427	1,444	1,870,429

Figure ES.2: Puget Sound 2005 Maritime Air Emissions Inventory Summary, tpy

Puget Sound Maritime Clean Air Strategy Result Examples

- OGVs switch to low sulfur fuel while hotelling
- All CHE used at the ports now use ULSD fuels or equivalent
- All Port of Seattle dray trucks, Port Metro Vancouver trucks, 94% of dray truck at Port of Tacoma now comply with 1994 PM emission standards

Port Authority of New York and New Jersey

New Jersey:

- Port Newark
- Elizabeth Port Authority Marine Terminal
- Auto Marine Terminal (Bayonne/Jersey City).

New York:

- Howland Hook Marine Terminal (Staten Island)
- Brooklyn Port Authority Marine Terminal

Figure 1: Port Authority of New York and New Jersey Seaport Facilities Map

Clean Air Strategy for the Port of New York & New Jersey

- Reduce maritime-related air quality impacts on human health and the environment from criteria air pollutants, especially those that come from diesel particulate emissions
- Reduce maritime-related contribution to greenhouse gas emissions associated with climate change
- Contribute to the effort to bring the airshed into air quality attainment

Port Authority of New York and New Jersey

- 2006 baseline inventory published November 2008
- Previous partial inventories:
 - ocean-going vessels/harbor craft (2000)
 - on-dock railroad locomotives (2002)
 - heavy-duty diesel vehicles (on-road trucks, 2005)
 - cargo handling equipment (2002 and 2004).

Port Authority of New York and New Jersey: Emissions Estimated

- Oxides of nitrogen (NOx)
- Carbon monoxide (CO)
- Particulate matter less than 10 microns in diameter (PM10)
- Particulate matter less than 2.5 microns in diameter (PM2.5)
- Volatile organic compounds (VOCs)
- Sulfur dioxide (SO2)
- Carbon dioxide (CO2)
- Nitrous oxide (N2O)
- Methane (CH4)

Port Authority of New York and New Jersey: Geographical Extent

17 counties across the states of New Jersey and New York coincident with the New York/Northern New Jersey/Long Island Non-Attainment Area (NYNJLINA)

Contributions of port emissions to total NYNJLINA (2006 baseline)

Table 1: Total Criteria Emission Summary by Source Category, %

NYNJLINA Source Category	NO _x	PM ₁₀	PM _{2.5}	voc	со	\$O₂
PANYNJ Maritime Emissions	2%	< 1%	1%	< 1%	< 1%	2%
Stationary and Area Emissions	31%	93%	75%	2%	56%	84%
Other Mobile Emissions	23%	4%	16%	34%	17%	11%
On-Road Mobile Emission	44%	3%	8%	64%	27%	3%
Total NYNJLINA Emissions, tons per year	445,285	178,451	42,441	522,245	2,840,374	170,044

Port Authority of New York and New Jersey: Inventory Results

Table ES.1: Criteria Pollutant Emission Summary by Source Category, tpy - 2006

Source Category	NO_x	PM_{10}	$\mathrm{PM}_{2.5}$	voc	со	SO_2
Cargo Handling Equipment	1,402	93	86	124	465	219
Heavy-Duty Diesel Vehicles	1,935	59	54	87	564	26
Railroad Locomotives	286	10	9	20	44	32
Ocean-Going Vessels	3,691	348	279	165	319	3,270
Harbor Craft	486	26	24	18	41	50
Total PANYNJ Emissions	7,800	537	452	413	1,434	3,597
NYNJLINA Emissions	445,285	178,451	42,441	522,245	2,840,374	170,044
PANYNJ Percentage	1.8%	0.3%	1.1%	0.1%	0.05%	2.1%