National Grid Property – Who we are, what we do and how we do it

Gloucester, 26th May, 2011

nationalgrid

Agenda:

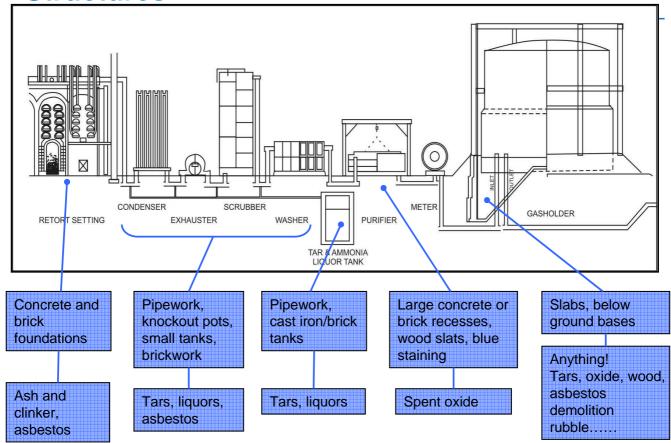
- Introduction to National Grid Property
- Introduction to Gasworks and our experience of them
- Cluster and National Grid

National Grid Property – Who we are and what we do

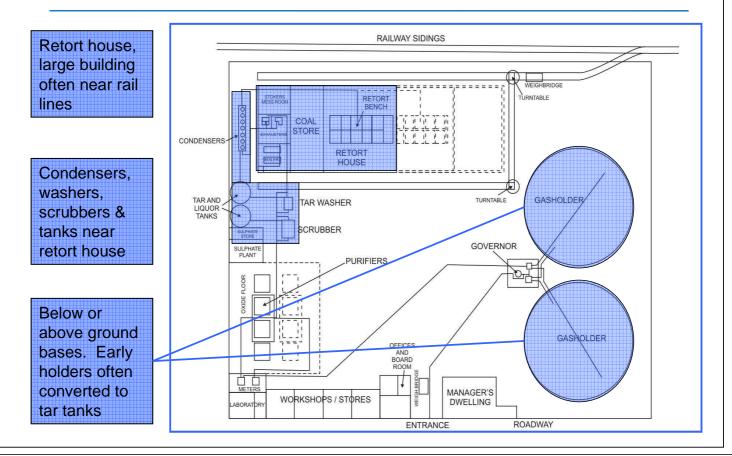
- National Grid Property manage a large portfolio of sites which include gasworks and associated parcels of land.
- We prioritise our portfolio to make the most efficient use of resources.
- We have a portfolio strategy that is proactive and seeks to address sites on a voluntary basis, we are keen to discuss any concerns / interest you may have about National Grid's sites.
- Our objective is to be recognised as a leader in brownfield remediation as we seek to encourage and enable brownfield regeneration.
- We have remediated more gasworks than anyone else.
- We want to encourage the sharing of experience and best practice.

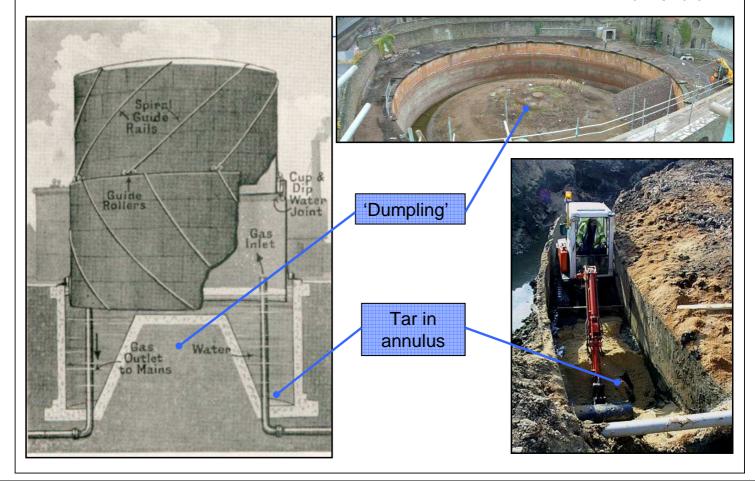
Risk Prioritisation – National Grid Property Approach

There are currently 1375 parcels of land for which we evaluate and manage risk


- Therefore we have to run a prioritisation process
- This is based on preliminary evaluation of the number and nature and severity of potential pollutant linkages on a site.
- Cross referenced to published map information.
- Re-evaluated regularly throughout the year based on incoming information.

Introduction to Gasworks and our experience of them


Gas Making Process & Remnant Structures



nationalgrid

Typical Gasworks Layout

Tar Tanks

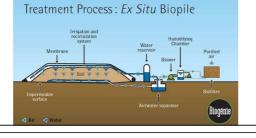
Constraints - Utility Services

nationalgrid

THE POWER OF ACTION

195.5	1993	94 94	xata	1010			959	96.0	10101	93 93 9	10101	XXX	at at c		# 94 I	HC		966	89	944	949	at at
				1214	114		110	1.1				100	100			88	10					
			11 E E	1.1	-	82	79		-		19122	Ľ	· ·		-	ч.						
			日田田				28			L V.	V		14	14.1		11	-					
									U		v	10										
				144										7 4								
	32															-						
	- 1			-	22		22			~	:::: C			101		22	-	22		-		
		_		U			D	н							v	н	6		7	P)	
		J		U).)			y	N	3	σ		v	H	Y	5	7	5	>	
		J	1	U	e);	>			y	Ň	יכ	σ		V	ľ	Ψ	5	7)	
		<i></i>		U);	>			y		וכ	C		V		Y	C	7)	
				U).	>			y		וכ	5		V		U	•	-		>	
				U													J		,		>	
																	U	•	7		>	
				U													U		7		>	
				U															-		>	
				U															-		>	
												יכ r:							-		>	

Choice of Remediation Strategy and Technologies – Key Decisions



- Practicability: Technical constraints
- Site constraints
- Time constraints
- Regulatory restraints
- Effectiveness: The extent to which the remediation would be effective
- The timescale
- Durability: The future timescale in relation to the characteristics of the significant pollutant linkage
- What can reasonably and practicably be achieved

Bio-Treatment

Using bacteria/other microbial organisms to break down toxic organic materials into CO2 and water.

- Effective for treating a wide range of materials
- Can treat a range of organic contaminants
- Creates a re-usable product
- Relatively low tech and low cost
- May require long treatment programme
- Not suitable for material for inorganic contaminants

contaminants into a matrix.

Creates a re-usable product

May create future constraint

Stabilisation and Solidification

Can treat a range of organic contaminants

May effect leaching of certain metals

Requires detailed testing and design

Use of cementitious and pozzalanic additive to chemically 'lock' Effective for treating a wide range of materials

THE POWER OF ACTIO

nationalgrid

THE POWER OF ACTION

nationalgrid

nationalgrid

Soil Washing

A wet extraction process for separating contaminants from potentially recoverable sand and gravel fractions.

- Effective for treating granular material
- Can treat a range of contaminants
- Creates a re-usable product
- High set-up cost
- Not suitable for material with high fines %
- Requires large amounts of water
- Recovered fines difficult to dispose

nationalgrid

THE POWER OF ACTIO

15

Selective Excavation and Screening

Careful excavation and processing to maximise reusable/recyclable materials

- Effective for treating a wide range of materials
- Highly cost effective
- Creates a re-usable product
- Needs careful supervision
- Need to ensure that environmental permitting requirements are met.

Landfill

Off-site Disposal to a Managed Facility.

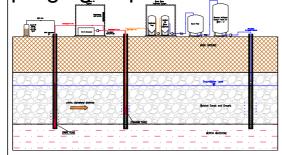
- Contaminated materials removed from site
- Simplest solution
- Robust long-term solution
- 'just moving the problem'
- Loss of LFTE post April 2012
- Not all waste can be disposed (e.g. WAC failing material)
- Environmental Impact (Haulage etc.)

Soil Treatment Facilities

Offsite treatment of contaminated material for reuse

- Effective for treating a wide range of materials
- Material removed from site
- No or reduced LFTE
- Creates a re-usable product
- Lower environmental impact
- Disposal of WAC failing material
- Transport costs to facility
- Material cannot be typically be re-used on site

 Increased import cost

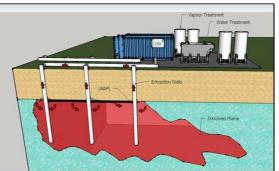

18

nationalgrid

In-situ Methods 1

Wide range of methodologies e.g.:

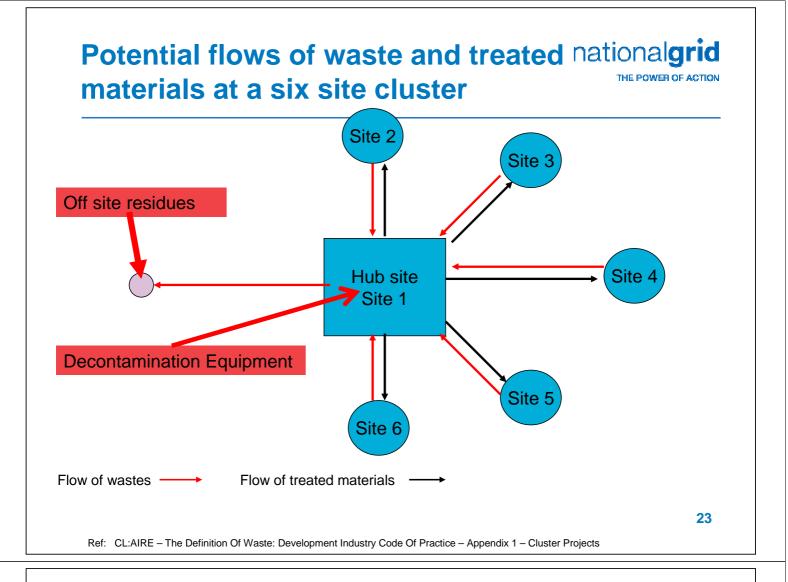
- Multi-phase Extraction
- Chemical Oxidation
- NAPL pumping
- Pump and Treat
- Sparging/Vapour Extraction



nationalgrid

In-situ Methods 2

- No mass excavation and can be done while sites remain operational
- Can treat a wide range of contaminants
- Flexibility to treat a wide range of depth and area
- Materials remain on-site
- Potentially less environmental impact
- May require long treatment programme
- Can be technically challenging
- May initially seem complex or expensive



Cluster and National Grid

Why Cluster?

- We have a large portfolio and many of the remaining sites are:
 - Small
 - Complex
 - In sensitive settings
 - All of the above
- Cluster allows us to maximise treatment and minimise disruption (as far as possible)

Recent Cluster Project

- North West
- 1 hub site and 4 donor sites
- Combination of treatment on site of origin and transport to hub for treatment

nationalgrid

THE POWER OF ACTION

Recent Cluster Project

- Individual batches from each site are placed into windrows, uniquely identified.
- Initial testing, followed by windrow turning using excavators with specialist attachments.
- Additives may be used to encourage bacterial reduction in hydrocarbons.
- Periodic testing of batches to monitor contaminant reduction.