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Abstract: This article considers the force control of an active probe for Atomic Force Microscopy (AFM). 
Firstly, the structure of this active probe is described. For designing the force controller, the model of this 
active probe was identified. Based on the measured frequency response, two notch filters were used to 
remove the resonant peak in open-loop frequency response. Then, a PI controller was designed to 
regulate the force of the probe. This controller was then implemented in a Digital Signal Processor (DSP). 
Experimental results were given to compare the actual performance of this controller with the 
conventional PI controller. It is shown that the controller with notch filters reduces the control error 
considerably and enables faster scan speed at weaker tip-sample interaction forces. 
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1. INTRODUCTION 

Atomic Force Microscope (AFM) is an important instrument 
in the field of nanotechnology. It is used in investigation and 
manipulation on the nanometre scale (Binnig et al., 1986). In 
an AFM, a probe tip supported on a micro-mechanical 
cantilever is used to scan the surface of the sample, a 
displacement unit is used to move the sample under the tip 
(or the tip over the sample), a detecting system for sensing 
the position and deflection of the tip, a feedback system to 
control the deflection of the cantilever and finally a computer 
system to control the displacement unit, measure data and 
convert the data into an image (Sarid, 1994). Most of the 
AFM use the piezoelectric actuators to provide the scanning 
motion with a relatively small scanning window of about 
100μm × 100μm (Merry et al., 2009). Today’s technological 
progress in electronics, the semiconductor industry, 
biotechnology, precision technology and many others 
requires metrological accurate object measurement with 
nanometre precision over large ranges (mm ranges). Such 
measurements are only possible if the measuring and 
positioning systems have good metrological characteristics 
and are traceable to national and international normal 
standards (Jaeger, 2010). In order to meet these requirements, 
a metrological large scan ranges AFM has been developed at 
the Institute of Process Measurement and Sensor Technology 
of the Ilmenau University of Technology (Dorozhovets et al., 
2006a, b, 2008). This AFM includes an active scanning probe 
and a nano-positioning and nano-measuring (NPM) machine 
which has a positioning and measuring range of 25mm × 
25mm × 5mm and a resolution of 0.1nm. 

In this paper, the force control of the active probe of the 
metrological large ranges AFM that developed at the Institute 

of Process Measurement and Sensor Technology of the 
Ilmenau University of Technology is considered. In general, 
probing of the sample surface can be performed in contact 
mode, non-contact mode or intermittent-contact (tapping) 
mode. In this paper, we only consider contact mode. In this 
mode, the tip and sample are in contact at all times and the 
force between the tip and the sample should keep at a desired 
constant value in a closed-loop operation. Generally, in 
commercial realizations a proportional integral (PI) controller 
is used to operate this loop and the bandwidth of the loop is 
tuned far below the first resonance frequency (Schitter et al. 
2004, Zou et al., 2004, Abramovitch et al., 2009). Thus the 
scan speed is limited. Recently, some researchers utilized 
more sophisticated controllers (for example, H theory based 
controller) to improve the control performance (Schitter et al. 
2004, Zou et al., 2004, Merry et al., 2009). However, the 
order of this kind of controller is high. This may cause some 
problems when implementing the controller.  

In this study, notch filters are used to improve the 
performance of the control loop. Firstly, the metrological 
large range AFM is described in Section 2. For designing the 
controller, the frequency response of the active probe is 
measured and a mathematical model is obtained in Section 3. 
Section 4 describes the design of the controller. In Section 5, 
scan results obtained by a PI controlled AFM are compared 
with the results obtained by the AFM that controlled by the 
proposed controller. Conclusions are given in Section 6. 

2. THE METROLOGICAL AFM 

The photograph and schematic representation of the 
metrological AFM are shown in Fig.1. This AFM includes an 
active scanning probe and a NPM machine. The sample for 
scanning is placed on the moveable corner mirror of the NPM  
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Table 1. Coefficients of the model. 

i  1 2 3 4 5 6 7 8 9 10 

ia  -0.1411 0.3293 -0.6104 -0.1141 -0.1603 0.0819 0.0646 -0.0562 -0.0197 0.1019

ib  -0.0091 -0.0121 -0.0084 0.0036 0.0162 0.0457 0.2543 0.3739 0.0933 -0.0894

i  11 12 13 14 15 16 17 18 19 20 

ia  0.2779 0.2152 0.0430 -0.1138 0.0028 -0.1647 0.2561 0.0107 0.0425 -0.1272

ib  0.0284 -0.0910 -0.1084 0.1023 0.0448 -0.0484 0.1377 0.2473 0.0955 0.0043

 


