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ABSTRACT 

Tower-based surveillance systems have been employed by the U.S. military to enhance 

intelligence, surveillance, and reconnaissance capabilities in Iraq and Afghanistan. We 

consider a scenario wherein two surveillance towers are installed in separate locations; 

however, the surveillance team does not have enough operators to operate both towers to 

their capacity. Two strategies can be used to operate these two towers: stationary 

allocation and dynamic allocation. We formulate a two-person nonzero-sum game to 

analyze these strategies, in which the surveillance team wants to maintain regional 

stability while insurgents carry out attacks to disrupt it.  

Our analysis suggests that the dynamic allocation strategy can improve the 

performance of surveillance towers over stationary allocation under most circumstances. 

The improvement tends to be more significant when the surveillance team has more 

surveillance resource. The dynamic allocation tends to be less effective when (1) a 

detected attack has a smaller negative impact on the insurgent operations, or when (2) a 

detected attack brings a larger immediate benefit to the surveillance team.  
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EXECUTIVE SUMMARY 

Dominant intelligence, surveillance, and reconnaissance capability is one of the key 

enablers in irregular warfare. This thesis is motivated by the deployment of Ground-

Based Operational Surveillance System—a 24-hour all-weather tower-based surveillance 

system—to enhance situation awareness in Iraq and Afghanistan in the late 2000s. When 

the number of operators is not enough to staff all surveillance towers, we examined 

whether it is helpful to dynamically move the operators between them, in the hope that an 

understaffed surveillance tower can still deter insurgency activities.  

We considered the following scenario: two surveillance towers are installed in 

separate locations. However, the surveillance team does not have enough operators to 

operate both towers to their capacity. We compared two strategies: stationary allocation 

and dynamic allocation. With stationary allocation, the team splits up so that each tower 

is partially operational; with dynamic allocation, the team moves back and forth between 

the two towers at random intervals. We formulated a two-person nonzero-sum game, in 

which the surveillance team wants to maintain regional stability while the insurgents 

carry out attacks to disrupt it. 

Our analysis suggests that the dynamic allocation strategy can improve the 

performance of the surveillance towers over stationary allocation under most 

circumstances. The improvement tends to be more significant when the surveillance team 

has more surveillance resource. The dynamic allocation tends to be less effective when 

(1) a detected attack has a smaller negative impact on the insurgent operations, or when 

(2) a detected attack brings a larger immediate benefit to the surveillance team. These 

findings can provide suggestions for decision makers in allocating resources to enhance 

ISR capabilities on the battlefield. 
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I. INTRODUCTION  

A. BACKGROUND 

1. Intelligence, Surveillance, and Reconnaissance 

In modern warfare, military forces seek not only to advance weapon systems, but 

also to enhance their capability in intelligence, surveillance, and reconnaissance (ISR). 

According to Joint Publication 1-02, ISR is an activity that synchronizes and integrates 

the planning and operation of sensors and assets, and processing, exploitation, and 

dissemination systems in direct support of current and future operations [1]. ISR is an 

integrated intelligence and operations function. For U.S. military operations in Iraq and 

Afghanistan, ISR capabilities are more critical than ever before, due to the nature of 

insurgent activities. Since insurgents can blend in easily with non-combatant citizens, an 

ability to dominate ISR on the battlefield is critical. A great deal of effort has been 

exerted to enhance ISR capabilities. For example, unmanned aerial vehicles and Ground-

Based Operational Surveillance Systems (G-BOSS) have been deployed for some time 

with many documented success stories. Generally speaking, these systems provide 

surveillance and reconnaissance on the battlefield by collecting video and audio 

intelligence to enhance the commander's situational awareness on the battlefield. This 

thesis focuses on G-BOSS. 

2. Ground-Based Operational Surveillance System 

G-BOSS is a tower-based surveillance system derived from the sensor suite 

utilized on the Rapid Aerostat Initial Deployment, as shown in Figure 1. This system 

consists of four major assemblies: 

• Cameras, including one primary infrared camera (FLIR T-3000), and one 
electro-optical infrared camera (FLIR Star SAFIRE IIIFP). 

• One mobile tower (approximately 107 feet tall). 

• One Man-Portable Surveillance and Target Acquisition Radar (MSTAR).  

• One Ground Control Station (GCS).  
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Currently, the United States Marine Corps (USMC) deploys G-BOSS to Iraq and 

Afghanistan to enhance ISR capabilities. The USMC awarded the initial $60 million G-

BOSS contract to Raytheon on April 9, 2008. The goal is to use these surveillance 

systems to detect and disrupt insurgent activities. According to a news release from the 

Quantico Sentry [2], G-BOSS is being deployed in four phases. 

1.  Phase One is deployment of G-BOSS to coalition outposts. During this phase, 
the system is operated manually at the base of each tower, with radio 
communications to the Combat Operation Center (COC) as shown in Figure 2. 

2. During Phase Two, G-BOSS is operated but the data/information is 
automatically fed to the COC. 

3. During Phase Three, G-BOSS is controlled from within the COC, with 
automatic slewing or rotating capabilities. During this phase, video storage 
capabilities are integrated. 

4. By Phase Four, the surveillance crew in charge of monitoring G-BOSS can 
track not only what is happening in their own region, but also that of the entire 
province through an integrated network. 

As this system is phased in, more monitors will be installed in COCs for 

consistent surveillance. It will thus be necessary to increase the number of operators to 

staff all systems in order to have better surveillance results. Increasing the number of 

operators, however, is usually a carefully considered constraint in combat situations. If it 

is not possible to increase the number of operators, the workload of current operators will 

then increase accordingly. According to Parasuraman and Mouloua [3], "the most 

significant factor that may influence the accuracy of monitoring under automation is task 

loads imposed on the operator." What can be done to make the best use of G-BOSS when 

facing a manpower constraint?  

This thesis explores the idea of assigning operators in a dynamic manner. Instead 

of assigning a single operator to one G-BOSS, the operator is moved among systems 

from time to time. Because the tower-based surveillance system is prominent in the areas 

where it is installed, the tower may still produce a deterrent effect for insurgents, even if 

it is not actively being monitored. With that idea in mind, one group of operators can be 

assigned to shift their attention back and forth between towers; the tower without 

operators will serve as a decoy. The objective in this thesis is to use mathematical models 
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to determine whether dynamic allocation of manpower can improve the performance of 

multiple systems, and whether a decoy tower can provide a deterrent effect with 

insurgents.  

 
Figure 1. Top of surveillance tower  

(From: FLIR http://www.gs.flir.com/datasheets/land.cfm) 

 
 

 
Figure 2. G-BOSS control room (From: Quantico Sentry) 
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B.  OBJECTIVE 

The goal of this thesis is to determine whether it is helpful to dynamically move 

manpower between surveillance towers when manpower is limited. The following 

scenario is considered: two surveillance towers are installed in two desired locations. 

However, there is only one surveillance team to operate one tower at its full capacity. It is 

possible either to move the surveillance team back and forth between the two towers, or 

to split the team so that each tower can be partially operational. The thesis develops 

mathematical models to study these two strategies. The findings in this thesis can provide 

suggestions for decision makers while employing surveillance systems on the battlefield. 

C. RELATED WORKS 

A significant amount of work has been done to improve the performance and 

effectiveness of surveillance systems in ISR and perimeter protection. The work can be 

divided into three categories. 

First, from the perspective of technology, the advances of cameras have had a 

significant influence on system performance, particularly the combination of a high-

resolution charge-coupled device and electro-optics with an infrared sensor system [4]. 

With a longer surveillance range, higher image resolution, and information integration, a 

camera could remotely monitor an adversary’s activity day and night. These new 

surveillance technologies not only mitigate false detection rates, but also help reduce 

crew requirements.  

Second, there is a stream of work that uses mathematical modeling and 

optimization to improve surveillance results. Szechtman et al. [5] used mathematical  

models to analyze optimal strategies for a moving surveillance sensor to detect infiltrators 

on a border. Midgette [6] proposed an agent-based simulation model to elevate the 

operational effectiveness of G-BOSS as guidance for system fielding. Also, William [7] 

carried out a surveillance and interdiction model with a game-theoretic approach to fight 

against vehicle-borne improvised explosive devices.  
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Third, there are studies that compare the frequency of criminal activity before and 

after installation of surveillance monitors. Gill and Spriggs [8] summarized their research 

on the impact of using closed-circuit television (CCTV) in different cities throughout 

Great Britain thusly: 

The use of CCTV needs to be supported by a strategy outlining the 
objectives of the system and how these will be fulfilled. This needs to take 
account of local crime problems and prevention measures already in place.  

Welsh and Farrington [9] concluded their research about using CCTV in crime 

prevention as follows:   

Overall, it might be concluded that CCTV reduces crime to a small degree. 
In light of the successful results, future CCTV schemes should be 
carefully implemented in different settings and should employ high quality 
evaluation designs with long follow-up periods. 

Conclusions from previous research indicates that having appropriate surveillance 

equipment is a key enabler toward better detection results in a surveillance plan, which 

corresponds to the objective of this thesis. 

D. THESIS ORGANIZATION 

The rest of this thesis is organized as follows. Chapter II formulates a two-person 

nonzero-sum game to model the interaction between coalition forces and insurgents. 

Coalition forces assign manpower between two surveillance towers, while insurgents 

launch attacks in order to interrupt regional stability. In Chapter III, numerical analysis is 

carried out to demonstrate the model. Situations are identified in which it is helpful to 

dynamically allocate manpower between the two surveillance towers. Finally, Chapter IV 

presents findings and suggests future research directions. 
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II. METHODOLOGY 

A. MODEL  

Consider a situation in which Blue has established military bases in two towns. 

Blue’s goal is to maintain peace and eliminate insurgent activities in these two towns. 

(From now on insurgent activities will be referred to as attacks for brevity.) Blue has one 

surveillance tower set up in each base, but Blue cannot detect all attacks in both towns at 

all times, due to a lack of resources (manpower, equipment, etc.). Denote by s (  s ≤ 2 ) the 

total resources available to Blue, such that Blue can allocate detection probability ip  to 

tower i , as long as   p1 + p2 ≤ s  and 0 1ip≤ ≤ , for 1,2i = . The problem facing Blue is 

how to allocate s between the two surveillance towers. 

 In each town, an insurgent group attempts to carry out attacks for its own gain. 

The insurgent group operating in town i is referred to as Red i, for i = 1,2 . Red 1 and Red 

2 operate independently from each other. For each Red team, the status quo is not to 

attack, in which case neither Red nor Blue receives a reward or a penalty. If a Red team 

launches an attack, there are two possible outcomes: either the attack is detected by 

Blue’s surveillance tower, or it is not. The Red team earns reward of +1 for each 

undetected attack, and incurs a penalty 0r >  (reward r− ) for each detected attack. 

Because Blue’s goal is to maintain peace and ideally to eliminate attacks altogether, there 

is a penalty for each attack regardless of whether or not the attack is detected. However, 

detecting an attack is better than not detecting it, so Blue incurs a penalty 1 (reward 1− ) 

for an undetected attack and a smaller penalty (0,1)b∈  (reward −b ) for a detected attack. 

Table 1 summarizes the reward for Blue and each Red team, respectively. 

 We model the interaction between Blue and two Red teams as a nonzero-sum 

game, where Blue moves first, and then each Red team moves second, independently, 

after observing Blue's strategy. The objective of each player is to maximize his own long-

run average reward. 
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Table 1.   Reward table 

 

If the detection probability is p  in a town, Blue’s expected reward for each attack 

is 

 ( 1)(1 ) ( ) 1 (1 ) ,p b p b p− − + − = − + −  (1) 

and Red’s expected reward for each attack is 

 ( 1)(1 ) ( ) 1 (1 ) .p r p r p+ − + − = − +  (2)                               

By setting Equation (2) to 0, we can solve 

 1ˆ .
1

p
r

=
+

 (3) 

If ˆp p> , Equation (2) is negative, so it is optimal for a Red team to shut down its 

operation altogether. In the special case when ˆp p= , Red’s expected reward for each 

attack is 0, so Red feels indifferent about whether to attack or not. For mathematical 

completeness, however, assume that Red will continue to attack if ˆp p= , as it gives Blue 

a negative expected reward. 

 Suppose each Red team can carry out attacks at a maximum rate x. Consider three 

cases for s: 

1. ( ]ˆ2 ,2s p∈ . If Blue allocates 1 2 ˆ/ 2p p s p= = > , then both Red teams will stop 
their operations. The long-run reward rate is 0 for all two players. 

2. [ ]ˆ0,s p∈ . No matter how Blue allocates s, both Red teams will continue to attack 
at the maximum rate x. The total long-run reward rate for both Red teams is  

 1 2(1 (1 ) 1 (1 ) ) (2 (1 ) ).x r p r p x r s− + + − + = − +  (4) 
Blue’s long-run reward rate is 

 1 2( 1 (1 ) 1 (1 ) ) ( 2 (1 ) ).x b p b p x b s− + − − + − = − + −  (5) 
3. ( ]ˆ ˆ,2s p p∈ . In this case, it is possible for Blue to allocate the detection 

probability such that it is optimal for one Red team to stop its operation. 
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The rest of this section focuses on the case when ˆ ˆ( ,2 ]s p p∈ . In particular, it 

examines two strategies for Blue: stationary allocation and dynamic allocation. 

1. Stationary Allocation 

With a stationary allocation, Blue assigns pi  to surveillance tower i, i = 1, 2, on a 

permanent basis. It is reasonable to assume that each Red team will discover this 

allocation sooner or later, whether by intelligence or by computing its own success rate. 

Without loss of generality, assume p1 ≥ p2 . It does not help to set 1 ˆp p≤ , with which the 

optimal strategy for each Red team is to attack at the maximum rate x. If Blue 

sets 1 ˆp p ε= + , for some 0ε > , then it is optimal for Red 1 to cease the operation, and 

for Red 2 to attack at rate x.  

Using Equation (2), Red 2's long-run reward rate is 

 ˆ(1 (1 )( )) (2 (1 )( )),x r s p x r sε ε− + − − = − + +  (6)  
which converges to  
 (2 (1 ) )x r s− +  (7) 
as 0ε ↓ .  

Using Equation (1), Blue’s long-run reward rate is 

 1ˆ( 1 (1 )( )) 1 (1 ) ,  
1

x b s p x b s
r

ε ε⎛ ⎞⎛ ⎞− + − − − = − + − − −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
 (8) 

which converges to 

 11 (1 ) ,   
1

x b s
r

⎛ ⎞⎛ ⎞− + − −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
 (9) 

as 0ε ↓ . 

 

2.  Dynamic Allocation 

With a dynamic allocation, Blue first assigns p  to one tower and s p−  to the 

other tower, and then swaps these allocations from time to time. Without loss of 

generality, assume p > s − p . The idea of dynamic allocation is to make ˆp p>  so that 

sometimes it is optimal for a Red team to pause attacks, but each Red team needs to guess 
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when to resume attacks. The tower with detection probability s p−  can be viewed as a 

decoy, which may provide a deterrence effect if a Red team does not know that detection 

probability has dropped from p to s p− . 

Blue has two decision variables p  and y , such that Blue allocates detection 

probability p  to one tower and s p−  to the other, and swaps these allocations at a 

Poisson rate y . Assume that the battle goes on indefinitely, and that over time each Red 

team learns about Blue's choices of p and y, but does not discover Blue's real-time 

allocation. Because the two Red teams do not interact with each other, and because the 

parameters are identical in the two towns, from now on the analysis will focus on the 

interaction between Blue and one Red team, henceforth Red for brevity.  

One feasible strategy for Red is to attack at a Poisson rate x . Alternatively, Red 

can set aside some effort to learn about the real-time detection probability at a Poisson 

rate z . Red can do this by sending a spy, bribing Blue’s people, or probing the system in 

some way. We will impose a constraint that requires x + α z ≤ c , where 0α >  models the 

tradeoff between the attack rate x and the learning rate z, and c is the maximum attack 

rate if Red sets the learning rate to 0. With a learning rate z > 0, Red would learn about 

the detection probability at time moments that constitute a Poisson process with rate z . In 

other words, the time between two consecutive learning points follows an exponential 

distribution with rate z , independent of everything else. 

Recall that p s p> − . We say a surveillance tower is in state 1 if its detection 

probability is p , and in state 0 if its detection probability is s p− . In other words, each 

tower remains in state 1 for a random time that is exponentially distributed with mean 1/y, 

and then switches to state 0 and stays in state 0 for another random time, which is also 

exponentially distributed with mean 1/y, and so on.  In the long run, each tower will be in 

each state 50% of the time. We say Red is in state 1 if Red is carrying out attacks at a 

Poisson rate x , and in state 0 if Red pauses its attacks. Red decides when it wants to 

move from one state to the other. 
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Because ˆp p> , when Red learns the tower is in state 1, Red should pause its 

attacks. Let ( )jkP t  denote the probability that the tower will be in state k  after t  time 

units if it is currently in state j, , 0,1j k = . Using the result in Ross [10], we have 

2
11 10

1 1( ) 1 ( )
2 2

ytP t e P t−= + = − . 

Red can compute the probability of detection after t  time units once it learns that 

Blue is in state 1, if Red does not having a learning point in the next t  time units, as 

2 2
11 10

1 1 1 1( ) ( ) ( ) ( )
2 2 2 2

yt ytP t p P t s p e p e s p− −⎛ ⎞ ⎛ ⎞⋅ + ⋅ − = + + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Red should attack if this detection probability is less than p̂ . After some algebra, 

we can show that Red should wait for another 

 

2ln
ˆ2ˆ

2

p s
p st
y

⎛ ⎞−
⎜ ⎟−⎝ ⎠=  (10) 

time units before resuming attacks, if Red does not have another learning point in this 

time period. Consequently, Red’s optimal strategy takes the following form: whenever 

Red learns that Blue’s tower is in state 1, Red pauses its attacks until the next learning 

point or until t̂  time units have elapsed. If Red learns Blue’s state is 0 within the next t̂  

time units, Red should resume attacks immediately; if Red does not have a learning point 

within the next t̂  time units, then Red resumes attacks after t̂  time units. With this 

strategy, we can define a renewal reward process, where a renewal is a time moment 

when Red learns that Blue’s tower is in state 1. Figure 3 depicts this renewal reward 

process.  
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Figure 3. Renewal reward process.  
This diagram depicts the renewal reward process if Blue dynamically allocates its resource. For Blue, 
each circle represents a switch point, with solid lines being in state 1 (detection probability p) and 
dashed lines being in state 0 (detection probability s-p). For Red, solid lines indicate state 1 
(attacking) and dashed lines indicate state 0 (not attacking). For the time line, each square represents 
a Red’s learning point, with a solid square being a renewal (Blue in state 1). 

Let  T denote the cycle time in this renewal reward process. In addition, denote by 

kT  the time until the next renewal if Blue’s current state is ,  0,1k k = . To compute   E[T1] , 

consider the next event. If Blue’s current state is 1, then the next event can either be 

Blue’s switch to state 0, or Red’s learning Blue’s state. Because the time to each event is 

exponentially distributed, the time to either event, whichever occurs first, is also 

exponentially distributed with a rate equal to the sum of the two individual rates y z+ . 

With probability   y / ( y + z) , the next event is Blue’s switch to state 0, in which case the 

additional time until a renewal is distributed as 0T . With probability z / ( y + z) , the next 

event is Red’s learning Blue’s state to be 1, which constitutes a renewal. Therefore, we 

can write 

[ ] [ ]1 0
1 .yE T E T

y z y z
= +

+ +
 

With a similar argument, we can write 

[ ] [ ]0 1
1 .E T E T
y

= +  

Solving the preceding yields  

[ ]1
2E T
z

= , and [ ]0
1 2E T
y z

= + . 
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By definition, T  and 1T  have identical distributions, so  

[ ] 2 .E T
z

=  

Let X  denote the number of detected attacks in a cycle, and Y the number of 

undetected attacks in a cycle. If Blue is in state k (k = 0, 1) and Red is in state 1 

(attacking), then let kX  denote the number of detected attacks until the next renewal, and 

kY  the number of undetected attacks until the next renewal. 

To compute [ ]1E X , consider whether Blue switches to state 0 first or Red learns 

Blue’s state first. The time until either event occurs follows an exponential distribution 

with rate y z+ , so the expected number of detections during this time period is 

( )px y z+ . Moreover, with probability ( )y y z+ , Blue will switch to state 0 first, in 

which case the additional number of detected attacks in the cycle is distributed as 0X . 

With probability ( )z y z+ , Red will learn that Blue is in state 1 first, which constitutes a 

renewal. Therefore, we can write 

[ ] [ ]1 0 .x yE X p E X
y z y z

= +
+ +

 

With a similar argument, we can write 

[ ] [ ]0 1( ) .xE X s p E X
y

= − +  

Solving from the preceding yields 

[ ]1
xE X s
z

= , and [ ]0 ( )x xE X s p s
y z

= − + . 

In a similar way, we can set up two linear equations involving [ ]1E Y  and [ ]0E Y  

as follows: 

[ ] [ ]1 0(1 ) ,x yE Y p E Y
y z y z

= − +
+ +
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[ ] [ ]0 1(1 ( )) .xE Y s p E Y
y

= − − +  

Solving from these two linear equations yields 

[ ]1 (2 )xE Y s
z

= − , and [ ]0 (1 ( )) (2 ).x xE Y s p s
y z

= − − + −  

Now we proceed to compute [ ]E X  and [ ]E Y . Let Z denote the time of the first 

learning point after the renewal, which follows an exponential distribution with rate z . 

To compute [ ]E X , condition on the event Z t= . If ˆt t< , then at time t, either (1) the 

cycle ends if Blue is in state 1, or (2) Red resumes attacks (moves to state 1) if Blue is in 

state 0. If ˆt t> , then Red resumes attacks at time t̂ . Therefore, 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

ˆ ˆ
10 0 11 1 10 00

ˆ ˆ ˆ ˆ ˆ2 2 2
0 1 00

ˆ ˆ( 2 )

ˆ ˆ( ) ( ( ) ( ) )

1 1 1 1 1 1
2 2 2 2 2 2

1 1         = (1 ) (2 )(1 ),
2 2 2

t zt zt

t yt zt zt yt zt yt

zt z y t

E X P t E X ze dt e P t E X P t E X

e ze dtE X e e E X e e E X

x xs e p s e
z z y

− −

− − − − − −

− − +

= + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ − − −
+

∫

∫

where t̂  is given in Equation (10). Similarly, 

[ ] [ ] [ ] [ ]
ˆ ˆ

10 0 11 1 10 00

ˆ ˆ( 2 )

ˆ ˆ( ) ( ( ) ( ) )

1 1(2 )(1 ) (2 )(1 ).
2 2 2

t zt zt

zt z y t

E Y P t E Y ze dt e P t E Y P t E Y

x xs e p s e
z z y

− −

− − +

= + +

= − + + − −
+

∫

 

Red’s long-run reward rate is equal to (renewal reward theory) 

 

[ ]
[ ]

[ ]
[ ]

ˆ ˆ( 2 )

( , , , ) ( 1) ( )

(2 (1 ) )(1 ) (1 )(2 ) (1 )  . 
4 2

zt z y t

E Y E X
R p y x z r

E T E T

x zr s e r p s e
z y

− − +

= + + −

⎛ ⎞
= − + + + + − −⎜ ⎟+⎝ ⎠

 (11) 

Red’s decision variables are x  and z , subject to x + α z ≤ c . Blue’s long-run reward rate 

is 
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[ ]
[ ]

[ ]
[ ]

ˆ ˆ( 2 )

( , , , ) ( 1) ( )

( 2 (1 ) )(1 ) (1 )(2 ) (1 )    
4 2

zt z y t

E Y E X
B p y x z b

E T E T

x zb s e b p s e
z y

− − +

= − + −

⎛ ⎞
= − + − + − − − −⎜ ⎟+⎝ ⎠

 (12) 

with decision variables p and y . 

Remark 1. An important parameter to consider is the long-run proportion of time 

when Red is attacking. From the definition of the renewal process, at the beginning of 

each cycle Red will remain in state 0 until either the next learning point, or t̂ , whichever 

occurs first. In other words, the amount of time Red is in state 0 in each cycle is 

ˆmin( , ),W t  where W follows an exponential distribution with rate z. In each cycle, the 

expected time that Red is not attacking (state 0) is 

ˆ ˆ

ˆ0

1ˆ ˆ[min( , )] (1 ).
t zw zw zt

t
E W t w ze dw t ze dw e

z
∞− − −= ⋅ + ⋅ = −∫ ∫  

Consequently, the long-run proportion of time Red is not attacking (state 0) is 

 ˆˆ[min( , )] 1 (1 ).  
[ ] 2

ztE W t e
E T

−= −  (13) 

The long-run proportion of time Red is attacking (state 1) is 

 ˆ1 (1 ).  
2

zte−+  (14) 

 

Remark 2. We assume that the two Red teams are operating independently, 

without any coordination. That is, when the Red team in one town learns the tower’s 

detection probability, it does not give this information to the Red team in the other town. 

In the case when the two Red teams maintain real-time communication, essentially the 

learning rate at each town is doubled and the same analysis applies.
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B.  RED’S OPTIMAL STRATEGY 

When Blue dynamically allocates its resources between the two surveillance 

towers, each player has two decision variables, as shown in Equations (11) and (12).  In 

this model, Blue moves first and Red moves second, with each player trying to maximize 

his own long-run average reward. To compute this equilibrium, we first solve Red's 

optimization problem for given p and y. Although Red has two decision variables, at 

optimality the constraint  x + α z ≤ c  must be equality, because R(p, y,x,z)
 
strictly 

increases in x when z is held constant. Substituting x c zα= −  into Equation (11), Red's 

objective function involves a single variable z  as follows: 

( )( ) ( ) ( ) ( ) ( )ˆ ˆ( 2 )( ) 2 1 1 1 2 1 .
4 2

zt z y tc z zR z r s e r p s e
z y

α − − +⎛ ⎞−
= − + + + + − −⎜ ⎟+⎝ ⎠  

By letting 

( )
( ) ( )

1

2

2 1 ,

1 2 ,

K r s

K r p s

≡ − +

≡ + −  

and using Equation (3) and (10) to get 

( ) ˆ21

2

2
1 ˆ2 1,
2 2

yt

s
rK p s e

K p s p s
−

−
+ −

= = = <
− −  

we can simplify R(z) to  

 

( ) ( )

( ) ( )

ˆ ˆ( 2 )
1 2

ˆ ˆ ˆ2 ( 2 )
2

ˆ ˆ2 ( 2 )
2

( ) 1 1
4 2

1 1
4 2

2 .       
4 2 2

zt z y t

yt zt z y t

yt z y t

c z zR z K e K e
z y

c z zK e e e
z y

c z z yK e e
z y z y

α

α

α

− − +

− − − +

− − +

⎛ ⎞−
= + + −⎜ ⎟+⎝ ⎠

⎛ ⎞−
= + + −⎜ ⎟+⎝ ⎠

⎛ ⎞−
= + +⎜ ⎟+ +⎝ ⎠

 (15) 
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Proposition 3. The function R(z) is concave in z. 

Proof:  We will show ''( ) 0R z <  to complete the proof. To facilitate the computation, let 

ˆ ˆ2 ( 2 )

( ) ,
4

2( ) ,
2 2

yt z y t

c zg z

z yh z e e
z y z y

α

− − +

−
=

= + +
+ +      

so 2''( ) ( ''( ) ( ) 2 '( ) '( ) ( ) ''( )).R z K g z h z g z h z g z h z= + +  

For g(z), compute 

'( ) 0.
4

g z α
= − <

 
''( ) 0.g z =  

Taking the first derivative of ( )h z  yields 

( )

( )( )

( )

ˆ ˆ( 2 ) ( 2 )
2

ˆ( 2 )
2

ˆ ˆ( 2 ) ( 2 )
2

2 ˆ'( ) 1 ( 2 )
( 2 )

2 ˆ1 1 ( 2 )
( 2 )

2 1 0
( 2 )

z y t z y t

z y t

z y t z y t

yh z e z y te
z y

y e z y t
z y

y e e
z y

− + − +

− +

− + +

= − − +
+

= − + +
+

> − =
+

 

where the inequality follows by letting ˆ( 2 ) 0z y tΔ = + >  in the inequality 1 eΔ+ Δ ≤ . In 

addition, 

( )( )

( )( )

( )

2ˆ ˆ ˆ( 2 ) ( 2 ) ( 2 )
3

2ˆ( 2 )
3

ˆ ˆ( 2 ) ( 2 )
3

4 1ˆ ˆ''( ) 1 ( 2 ) 2
( 2 ) 2

4 1ˆ ˆ1 1 ( 2 ) 2
( 2 ) 2

4 1 0,
( 2 )

z y t z y t z y t

z y t

z y t z y t

yh z e z y te z y t e
z y

y e z y t z y t
z y

y e e
z y

− + − + − +

− +

− + +

⎛ ⎞= − + + + + +⎜ ⎟+ ⎝ ⎠

⎛ ⎞⎛ ⎞= − + + + + +⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

< − + =
+  

where the inequality follows by letting ˆ( 2 ) 0z y tΔ = + >  in the inequality 

2

1
2

eΔΔ
+ Δ + ≤ . Consequently, ''( ) 0R z < , so R(z) is concave in z.                                  ■ 
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Red’s objective is to choose [ ]0,z c α∈  to maximize R(z). Because ( )R z  is 

concave in z, to maximize ( )R z , first compute 

 ( ) ( )ˆ21 2ˆ'(0) 2 1 . 
4 4 2

ytK K cR ct e
y

α −= − − + −  (16) 

Consider two cases: 

1. '(0) 0R > :  In this case, it is optimal to set * 0z = . 

2. '(0) 0R < : Red wants to maximize ( )R z  for [ ]0,z c α∈ . Because ( )R z  is 

 concave and '( ) 0R c α < , to maximize ( )R z , it is equivalent to solve '( ) 0R z = . A 

 simple bisection algorithm is given below to compute *z  such that '( *) 0R z = . 

 The constant δ  is the error bound on the solution. 

 (a) Let 0a ←  and b c α← . 

 (b) Let ( ) / 2m a b← + , and compute '( )R m . 

 (c) If '( ) 0R m = , then *z m=  and exit. If '( ) 0R m > , then let a m← ; if    

                 '( ) 0R m < , then let b m← . 

 (d) If b − a > δ , go to (b); otherwise *z a=  and exit. 

C.  BLUE’S OPTIMAL STRATEGY 

Denote the optimal learning rate derived from the preceding algorithm by 
*( , )z p y , and let   x

*( p, y) = c −α z*( p, y) . Let  

 ˆ ( , ) ( , , * ( , ), * ( , )),B p y B p y x p y z p y=  (17) 

which Blue wishes to maximize by choosing p and y. To compute Blue's optimal strategy, 

we first plot ˆ ( , )B p y  and observe that the function is unimodal in each variable. We use 

the following algorithm to compute Blue's optimal strategy. 

1. Let   i ← 0 , and ˆmin(1,( ) / 2)ip s p← + . Use the golden section search to 

 compute ˆarg max ( , )i iy
y B p y←   
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2. Use the golden section search to compute 1
ˆarg max ( , )i ip

p B p y+ ← . 

3. Use the golden section search to compute 1 1
ˆarg max ( , )i iy

y B p y+ +← . 

4. If 1 1
ˆ ˆ( , ) ( , )i i i iB p y B p y δ+ + − > , then let i ← i +1 and go to step 2. The parameter 

 δ  is the error bound.  

5. Output   y
* = yi+1  and   p

* = pi+1  
as Blue's optimal strategy. 

 We implement the preceding algorithm in Microsoft Excel using VBA. The end 

result is a decision aid that computes the optimal strategies for both players. For more 

details on the decision aid, see Appendix A.  
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III. NUMERICAL ANALYSIS 

The model presented in this thesis has five parameters, namely r , b , s , c , and α . 

The parameters r  and b  model the trade-off between a detected attack and an undetected 

attack for Red and Blue, respectively. The parameter s  represents the total resources 

available to Blue. The parameter c  represents the maximum effort Red can divide 

between attacking and spying on Blue tower status. Without loss of generality, we can set 

1c = , because using another value is equivalent to scaling the clock to a different time 

unit. Finally, the parameter α  models the trade-off between Red’s attack rate and its 

learning rate.  

Intuitively, a small α  implies that it is easy to learn about Blue’s tower status, so 

Red can set aside more effort to attack. However, the effect of learning depends not only 

on Red’s learning rate x  but also Blue’s switch rate y . Because Blue can set y  freely, it 

turns out that the parameter α  does not have any effect on the optimal solution. 

Mathematically, rewrite Equation (11) as )( , , , ,R p x y z α  and Equation (12) as 

)( , , , ,B p x y z α  to signify its dependence on α , and note that 

) ( , , , ,1)
) ( , , ,

( , , , ,
( , , , ,, 1)

R p y x z
B

R p y x z
B pp y x z y x z

α α α
α α α

=
=

 

In other words, if we treat zα  (instead of z ) as Red’s decision variable and yα  

(instead of y ) as Blue’s decision variable, then we convert the original problem to an 

equivalent problem with 1α = . Consequently, we can also set 1α =  without loss of 

generality. 

From Blue’s standpoint, the optimal choice of y  involves a delicate balance. If y  

is too small (say, once a year), then Red can easily take advantage of it by setting a 

moderate learning rate without much sacrifice to its attack rate. If y  is too large (say, 

once an hour), then Red might as well give up learning altogether and attack at the 

maximum rate 1, which defeats Blue’s purpose of using decoy surveillance towers. In 
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other words, Blue’s choice of y  needs to be large enough to keep Red honest, and small 

enough so that Red has an incentive to set aside some effort to spy on Blue’s operations. 

By setting 1c α= = , there are three parameters we need to consider. In Section 

A, we set 4,  0.5r b= = , and 0.3s =  as our main example in order to demonstrate how to 

compute the optimal strategy. In Section B, we vary the parameter s  in order to show 

how dynamic allocation can improve Blue’s performance beyond stationary allocation. 

Finally in Section C, we vary the parameters r  and b  in order to discuss some interesting 

observations.  

A. MAIN EXAMPLE  

This section demonstrates how to compute the optimal strategies of Blue and Red 

while using dynamic allocation. We consider a plausible scenario by setting 

4,  0.5r b= = . Recall that the dynamic case applies when ( ]ˆ ˆ, 2s p p∈ , where ˆ 0.2p =  and 

ˆ2 0.4p =  according to Equation (3). We set 0.3s =  to demonstrate computation of the 

optimal strategy.  

1. Red's Optimal Strategy 

Recall from Equation (15), Red has one decision variable, namely the learning 

rate z . Red decides on the value z  after finding out Blue’s detection probability p  and 

switch rate y . For example, if Blue sets 0.3p =  and 0.01980y = , then Red can use 

Equation (15) to compute ( )R z . Figure 4 depicts the function ( )R z , which  is concave in 

z  as proved in Proposition 3. We then use bisection method to compute * 0.13237z = , 

and from Red’s constraint ,x z cα+ = * 0.8696x =  can be solved as well. In other words, 

with the optimal strategy, on average, Red will learn about Blue tower status once every 

7.75 time units, and will attack once every 1.15 time units.  
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Figure 4. Red's optimal strategy: Given Blue’s strategy is 0.3,  0.0198p y= = , Red 
should use * 0.13237z = .  

 

2. Blue's Optimal Strategy 

Recall Blue’s objective function ˆ( , ) ( , , * ( , ), * ( , ))B p y B p y x p y z p y=  from 

Equation (17). For the main example when 4,  0.5r b= = , and 0.3s = , we can plot 

ˆ( , )B p y , which is shown in Figure 5. 
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Figure 5. Blue's objective function ˆ( , )B p y  
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Although it may be difficult to see, the function ˆ( , )B p y  in Figure 5 is indeed 

unimodal in p  and in y .  Figure 6 shows the same function, when one of the variables is 

fixed. We use the golden section search method in each dimension iteratively to compute 

*p and *y , as discussed in Chapter II, Section B. In the main example, the algorithm 

produces ˆ( *, *) 0.43631B p y = − , when Blue set * 0.3p =  and * 0.0198y = . In other 

words, the model suggests that Blue’s optimal strategy is to set one tower with detection 

probability 0.3p =  the other with detection probability 0s p− =  and, on average, switch 

between towers every 50.5 time units.  
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Figure 6. ˆ( , *)B p y  and ˆ( *, )B p y are unimodal in p and y  when 
4,  0.5,  0.3r b s= = = . 

 

Although we did not prove it mathematically, ˆ ( , )B p y  is unimodal in p  and in y  

in all the numerical experiments we conducted. Another example when the optimal p  

does not lie on the boundary is shown in Figure 7. Consequently, our algorithm in 

Chapter II works well in computing the optimal solution. 
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Figure 7. ˆ( , *)B p y  and ˆ( *, )B p y  are unimodal in p  and y  when 
1,  0.1,  0.9r b s= = = . 

 

B.  EFFECTIVENESS OF DYNAMIC ALLOCATION 

This section compares dynamic allocation with stationary allocation. Notice that 

when using dynamic allocation in two towns, the long-run reward rates derived from 

Equation (11) and (12) represent Red and Blue’s reward in one town, respectively. For a 

fair comparison with stationary allocation, we multiply these two numbers by two. All 

the numbers reported in the remainder of this chapter refer to the total reward in the two 

towns. 
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Figure 8. Comparison between dynamic allocation and stationary allocation with 
4,  0.5r b= =  
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In the main example, we set 4,  0.5r b= = , which yields ˆ 0.2p =  and ˆ2 0.4p = , 

according to Equation (3). We consider three cases as in Chapter II, Section A. 

First, in the case ˆ[0 ,  ]s p∈ , Blue’s long-run reward rate is Equation (5), and 

Red’s long-run reward rate is Equation (4), as derived in Chapter II, Section A. As shown 

in Figure 8, when  [0 ,  0.2]s∈ , Red’s long-run reward rate decreased linearly, and 

Blue’s long-run reward rate increases linearly, as Blue’s resources increased. 

Second, in the case ˆ ˆ(  ,  2 ]s p p∈ , Blue has two options for resource allocation, 

either stationary allocation or dynamic allocation. If Blue chooses a stationary allocation 

strategy, we can use Equation (9) to plot Blue’s long-run reward rate, and use Equation 

(7) to plot Red’s long-run reward rate. The results of dynamic allocation come from the 

algorithm described in Chapter II, Section B and C. With dynamic allocation strategy, we 

can use Equation (12) to plot Blue’s long-run reward rate, and use Equation (11) to plot 

Red’s long-run reward rate.  

Third, in the case of ˆ(2  ,  2]s p∈ , it is trivial for Blue to allocate 

1 2 ˆ/ 2p p s p= = > . It is optimal for both Red teams to stop their operations, so the 

payoffs of all players are zero. Therefore, this case is not shown in Figure 8. 

As shown in Figure 8, dynamic allocation is better than stationary allocation for 

Blue. In our main example, compared with the stationary allocation, the Blue’s long-run 

reward rate with dynamic allocation improves from 0.15% to 28.71% as s  increased 

from 0.2 to 0.4.  

With Blue’s dynamic allocation strategy, however, Red’s long-run reward rate 

also increases. As Red can learn the tower’s status, Red will attack when attacks are less 

likely to be detected, and will pause when attacks are more likely to be detected. 

Although Red has a smaller attack rate x  (because Red sets aside some effort on 

learning), its attacks become more effective. Consequently, Red’s performance also 

improves when Blue uses dynamic allocation. In fact, Red’s improvement as a percentage 

to that in stationary allocation is better than Blue’s. This observation will be examined 

again in Section C of this chapter. 
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Blue’s use of dynamic allocation also affects Red’s operations. In Figure 9, we 

plot the long-run proportion of time Red is attacking as derived in Equation (14). The 

proportion of time Red is attacking is higher than 50% (stationary allocation), and 

increases when Blue’s total resource s  increases. The long-run attack rate, however, is 

computed by multiplying Equation (14) with the instantaneous attack rate x . As seen in 

Figure 10, Red’s long-run attack rate is less than 50% (stationary allocation), and 

decreases when s  increases.  
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Figure 9. Long-run proportion of time Red is attacking in dynamic allocation, 

compared with 0.5 in the case of stationary allocation. 
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Figure 10. Red long-run attack rate in dynamic allocation, compared with 0.5 in the 

case of stationary allocation. 
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C. DISCUSSIONS  

In this section, we vary parameters b  and r  to see how they affect the optimal 

strategy.  First, we fix 4r = , and compare three value of 0.1,  0.5,  0.9b = , as shown in 

Figure 11.  
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Figure 11. Comparison between dynamic allocation and stationary allocation with 

4,  0.1,  0.5, 0.9r b= =  
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As shown in Figure 11, qualitatively the results look about the same when b  

changes. The dynamic allocation always provides some benefit over stationary allocation, 

and the improvement is more significant when s  increases. Table 2 reports the reward 

rate of dynamic allocation as percentage over that of stationary allocation, for Blue and 

Red, respectively. It shows that, for both players, the improvement is more significant for 

a larger value of b .  In other words, dynamic allocation is more effective for a larger s  

or for a larger b . Also seen in Table 2, Red’s improvement is larger than Blue’s.  

 

s  
 4r =  

0.24 0.28 0.32 0.36 

Blue 0.78% 3.61% 8.18% 15.31% 
0.1 

Red 13.78% 30.26% 57.56% 126.69% 

Blue 1.96% 5.72% 10.98% 18.40% 
0.5 

Red 14.21% 31.63% 60.71% 134.47% 

Blue 3.13% 7.76% 13.61% 21.23% 

b  

0.9 
Red 14.61% 32.91% 63.67% 141.83% 

Table 2.   Improvement in dynamic allocation as b increases 

 

Next, we repeat the experiment for 1r =  and 9r = , and plot the results in Figure 

12  and Figure 13, respectively. 
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Figure 12. Comparison between dynamic allocation and stationary allocation with 

1,  0.1,  0.5, 0.9r b= =  
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Figure 13. Comparison between dynamic allocation and stationary allocation with 

9,  0.1,  0.5, 0.9r b= =  
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As shown in Figure 12, there are some cases where dynamic allocation does not 

provide additional benefits beyond those of stationary allocation. For instance, when 

1,  0.1r b= = , the optimal solution to dynamic allocation coincides with stationary 

allocation, when s  is between 0.5 and 0.8. We plot Red’s optimal strategy in this case in 

Figure 14. 
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Figure 14. Red’s optimal strategy when the optimal solution to dynamic allocation 

coincides with stationary allocation 

 

Qualitatively speaking, dynamic allocation tends to be less effective when r , b , 

and s  are small. Below we offer some intuitive explanations. When r  is small (close to 

0), Red is not very concerned with a detected attack, so Red has less incentive to invest in 

the learning rate, which makes dynamic allocation less effective. When b  is large (close 

to 1), Blue does not care much between detecting an attack or not. Instead, for Blue it is 

important to reduce Red’s long-run attack rate, which can be accomplished by dynamic 

allocation. Finally, when s  is small (close to p̂ ), Red’s expected payoff for each attack 

is only slightly less than 0, even if the detection probability is s . Therefore, Red has less 

incentive to find out Blue’s tower status, which makes dynamic allocation less effective. 

In summary, dynamic allocation tends to be more effective when r , b , and s  are larger. 
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IV.  CONCLUSIONS 

This thesis examined how to operate two surveillance towers most effectively 

with limited manpower (surveillance resources). In particular, a dynamic allocation 

strategy was studied, with which the surveillance team is moved between the two towers 

intermittently. Because it is difficult to tell from the outside whether a surveillance tower 

is fully functional, the understaffed tower can serve as a decoy to deter insurgent 

activities. The problem was formulated as a two-person nonzero-sum game between the 

insurgents and the government forces, with the latter moving first. After an algorithm is 

presented to compute the equilibrium in this game, this study’s findings were 

demonstrated numerically. 

Our analysis suggests that the dynamic allocation strategy can improve the 

performance of surveillance towers under most circumstances. The improvement tends to 

be more significant when government forces have more surveillance resources. Dynamic 

allocation tends to be less effective when (1) a detected attack has a smaller negative 

impact on insurgent operations, or when (2) a detected attack brings a larger immediate 

benefit to government forces. Our model applies not only to military operations but also 

to surveillance problems in general. 

There are some limitations to our model. First, it assumes that attacks follow a 

Poisson process. Second, it assumes that there is no cost to switch the resource between 

surveillance towers. This assumption may be reasonable when the videos from two 

towers are fed to a single control room, but not if there are two separate control rooms. 

Third, the model assumes that the detection probability increases linearly in the allocated 

resource. 

There are many possible future research directions. First, it may be worthwhile to 

study an asymmetric model with different parameters in the two towns. Second, 

extending analysis to more than two surveillance towers can give government forces 

more flexibility. Finally, this thesis studies Stackelberg equilibrium, in which government  
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forces move first and insurgents move second. It is important to study whether there are 

other types of equilibriums, especially an equilibrium that results from simultaneous 

moves. 
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APPENDIX 

A. DECISION AID 

This Excel file implements the algorithms described in Chapter II, and consists of 

six worksheets. The green cells require the user to enter input values. The yellow cells are 

computation results from VBA codes.  The red cells contain formulas, which should not 

be modified by the user.  Below we explain each worksheet one at a time. 

1. Parameter  
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This worksheet allows a user to enter model parameters, namely ,  ,  ,  r b cα  and s . 

The reward table will be formulated and p̂  computed. By clicking on the button, the 

program will check the value of  s  and show the corresponding result as Figure 15. In 

addition, the default precision for computation is 1.0E-8, which can be changed accoring 

to the user’s desired calculation result. 

 
 

 
 

 
Figure 15. Allocation recommendations for different s  
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2. Blue 

 

 

This worksheet will be activated if ˆ ˆ( ,2 ]s p p∈ . In this worksheet, the user needs 

to enter a initial cut “p” ( ˆ[ , ]p p s∈ ) as a starting point for program to perform the golden 

section search, as explained in Chapter II, Section C. The optimal strategies for Blue and 

Red will then be reported. Also, the iteration results of the golden section search will be 

listed for reference on the right-hand side. This worksheet implements the algorithms in 

Chapter II, Section C, “Blue’s Optimal Strategy.” 
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3. Red 

 

This worksheet plots Red’s objective function ( )R z  and computes Red’s optimal 

strategy, *z  and *x , as explained in Chapter II, Section B. Blue’s strategy p  and y  are 

required inputs. This worksheet implements the algorithm in Chapter II, Section B, 

“Red’s Optimal Strategy.” 
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4.  FindY 

 

By holding p  constant, this worksheet plots ˆ( , )B p y  as a function of y , and 

computes y  that maximizes it. It implements the golden section search method. The 

value of p  is a required input. This worksheet implements  the algorithm in Chapter II, 

Section C, “Blue’s Optimal Strategy.” 
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5. FindP 

 

By holding y  constant, this worksheet plots ˆ( , )B p y  as a function of p , and 

computes p  that maximizes it. It implements the golden section search method. The 

value of y  is a required input. This worksheet implements the algorithm in Chapter II, 

Section C, “Blue’s Optimal Strategy.” 
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6. Experiment 

 

This worksheet shows --given ,  ,  ,  r b cα -- the comparison of dynamic and 

stationary allocations using different values of s . In addition to numbers, it shows a plot 

to compare the two strategies. 
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