

Asia PKI Consortium GA/SC Meeting 2010 New Delhi

#### C.E.Veni Madhavan

Informatics Laboratory Department of Computer Science and Automation Indian Institute of Science, Bangalore cevm@csa.iisc.ernet.in

29 October, 2010

- 1. Cryptography Primer
- 2. Algorithms Engineering
- 3. Cryptanalysis
- 4. Cryptanalysis Techniques and Effort
- 5. Typical work factors
- 6. Attacks

# 1. Cryptography Primer

- Combinatorial, Algebraic and Number Theoretic techniques
- Pseudo-random Bits
- Block and Stream Ciphers
- Public Key Encryption
- Digital signatures
- Hash functions and information integrity
- Challenge-Response, Zero Knowledge based identification
- Efficient implementation of protocols in software and hardware
- Technology of secure smart-card processors
- Key establishment, certification, escrow, TTP
- Cryptanalysis and Security of cryptographic protocols
- Patents, Export control laws, Standards and Cyber laws

#### Typical PIV 3 GHz, Linux, C Benchmarks :

- Stream Ciphers (  ${\simeq}1.5$  Gbits/sec ) : LFSR, non-linear FSR, FISH, PIKE, A5 ...
- Block Ciphers ( ≃300 Mbits/sec ) : DES, IDEA, BLOWFISH, RC5 ( 64 bit ); RC6, TWOFISH, MARS, RIJNDAEL, SERPENT ( AES-128 bit )
- Public Key Ciphers (  $\simeq 20$  Kbits/sec ) : RSA, ElGamal ( $\mathbf{F}_p$ ;  $\mathbf{F}_q$ ,  $q = 2^n$ ,  $p^n$ ), Elliptic Curve ( $\mathbf{E}(\mathbf{F}_q)$ ); Chor-Rivest, NTRU ...
- Digital Signatures

   (generation ≃20 Kbits/sec, verification ≃ 1.2 Mbits/sec):
   RSA, ElGamal (F<sub>p</sub>; F<sub>q</sub>, q = 2<sup>n</sup>, p<sup>n</sup>), Elliptic Curve (E(F<sub>q</sub>));

### 3. Cryptanalysis

- Integer Factoring Problems (IFP) Let N be an integer with N = p \* q for prime integers, p, q. Given N find the factors.
- **2** Discrete Logarithm Problems (DLP) Let *G* be a group. The groups to be considered are (i) the multiplicative group of the finite field  $F_q$ , for *q* an odd prime or  $q = 2^m$ , (ii)the additive group of points on an elliptic curve over a finite field  $E(F_q)$ . Let *g* be a fixed, distinguished element (e.g., a generator of a cyclic group or an element of large order) of *G* and let  $a = g^x$  for some *x*. Given *g*, *a* in *G* determine *x*.
- Statistical Analysis Problems (SAP) cryptanalysis Given the cipher-text c =< c<sub>0</sub>,..., c<sub>N</sub> >, c<sub>j</sub> ∈ {0,1} output of (i) a stream cipher or (ii) a block cipher, determine the corresponding (i) plain-text p =< p<sub>o</sub>,..., p<sub>N</sub>, p<sub>j</sub> ∈ {0,1} > or, (ii) symmetric key k =< k<sub>o</sub>,..., k<sub>n</sub>, k<sub>j</sub> ∈ {0,1} >, under various cryptanalytic scenarios.

ヘロト 人間 とくほ とくほ とう

### Cryptanalysis Techniques and Effort

• Stream Ciphers :

linear complexity profile, correlations, mul. var. poly. eqns ...

- Block Ciphers : differential, linear, Mod n attacks ...
- Public Key Ciphers integer factorization, discrete logarithms in groups, lattice short vectors, modular square roots ...
- side channel attacks timing attacks, power analysis ...
- 1 Day =  $86400 > \sim 2^{16}$  seconds; 1 Year =  $2^{25}$  seconds,
- (assuming 1 single precision int/float mul instruction = 1 cycle);
  - 1 MIPS/ 1 Mflops Year =  $2^{45}$  cycles ;
  - 1 BIPS/ 1 Gflops Year =  $2^{55}$  cycles ;
  - 1 TIPS/ 1 Tflops Year =  $2^{65}$  cycles ;
  - 1 PIPS/ 1 Pflops Year =  $2^{75}$  cycles ;

## Cryptanalysis Techniques and Effort

- Our PC is 1GHz Pentium IV processor = 2<sup>30</sup> cycles/second ; 1 PC Year = 2<sup>55</sup> cycles;
- a desk-top super-computer delivers  $\simeq 2^{40}$  cycles/second or  $\simeq 2^{65}$  cycles/year - a PARAM-PADMA year (approximately the work-factor for factoring a 512 bit integer or breaking a RSA-512 key)
- DES (i) brute-force : 2<sup>55</sup> trials X 2<sup>9</sup> cycles per trial = 2<sup>64</sup> cycles = 512 BIPS Years or = 512 PC Years
- Assuming Differential Cryptanalysis implementation with all the required storage and communication, the effort is 2<sup>45</sup> trials or 2<sup>54</sup> cycles or 0.5 PC Year

- Let  $L(n) = \exp\{(1.93 + o(1))(\log n)^{1/3}(\log \log n)^{2/3}\}$
- *L*(*n*) represents the cost of all computations for the currently, known, most efficient algorithms for Factoring, DL etc.
- The [1999] factoring record RSA155 ( 512 bit n = pq ), would thus be  $L(2^{2^9}) \sim 2^{64}$ . In actual practice it was  $2^{58}$ , that is 64 times faster than straight DES attack. I call this equivalent to 1/64 DES cracks.
- I must note that certain arithmetic ops in factoring require more cycles than DES ops.

#### 5. Typical Work Factors

| Integer factoring :                                                                                           |                    |                                       |               |  |  |
|---------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|---------------|--|--|
| size (bits)                                                                                                   | 512                | 1024                                  | 2048          |  |  |
| work (cycles)                                                                                                 | 2^{64}             | 2^{86}                                | 2^{116}       |  |  |
| Discrete logarithm in F_q                                                                                     |                    |                                       |               |  |  |
| size (bits)                                                                                                   | 512                | 1024                                  | 2048          |  |  |
| work (cycles)                                                                                                 | 2^{60}             | 2^{80}                                | 2^{100}       |  |  |
| Discrete logarithm in E(F_q), J(F_q)                                                                          |                    |                                       |               |  |  |
| size (bits)                                                                                                   | 160                | 200                                   | 240           |  |  |
| work (cycles)                                                                                                 | 2^{70}             | 2^{90}                                | 2^{120}       |  |  |
| DES (16 rounds) key size 56<br>work (straight) : 2 <sup>{65</sup> cyc<br>work (DC/LC ) : 2 <sup>{55</sup> cyc | bits<br>les<br>les |                                       |               |  |  |
| AES (Rijndael - 10 rounds)                                                                                    | key size           | 128 bits                              |               |  |  |
| work : > 2^{110} cycles                                                                                       |                    | • • • • • • • • • • • • • • • • • • • | ◆ 臣 ▶ → ◆ 臣 ▶ |  |  |

C.E.Veni Madhavan (IISc)

3

```
most stream ciphers key material (~128 bits) work : > 2^{110} cycles
```

| Transposition cipher |        |        |        |  |  |  |
|----------------------|--------|--------|--------|--|--|--|
| size (chars)         | 400    | 900    | 1600   |  |  |  |
| work (cycles)        | 2^{50} | 2^{56} | 2^{59} |  |  |  |

→ ★ Ξ:

3

```
[1995]
RSA-130 : 432 : exp( 1.93 * 6.69 * 3.19 )
        = \exp(41.18) = 2^{(59.41)}
[1999]
RSA-512 : 512 : exp( 1.93 * 7.08 * 3.25 )
        = \exp(44.10) = 2^{(63.62)}
[2003]
RSA-576 : 576 : exp( 1.93 * 7.36 * 3.30 )
        = \exp(46.88) = 2^{(67.6)}
[2005]
RSA-640 : 640 : exp( 1.93 * 7.63 * 3.34 )
        = \exp(49.18) = 2^{(70.85)}
[2010]
RSA-768 : 768 : exp( 1.93 * 8.10 * 3.40 )
        = \exp(53.23) = 2^{(76.80)}
```

| L(n,c<br>c = 1 | c,e)=exp{<br>1.923. e= | [c*(ln n)^(1/3<br>=1/3 | )*(ln(ln (n)))^(1/3),          |  |
|----------------|------------------------|------------------------|--------------------------------|--|
| no. bits       |                        | u                      | practical bounds $T = 2 (u)$ : |  |
| 463            | 61.11                  | 54 (13000 hr           | s.@3GHz:~2^(57)>~2^(54))       |  |
| 512            | 63.62                  | 56.3 (?)               |                                |  |
| 576            | 67.67                  | 58.9 (?)               |                                |  |
| 640            | 70.85                  | 62 (40 Opter           | on,1yr:~40*3*2^(30)*2^(25))    |  |
| 704            | 73.45                  | 65.5 (?)(~11           | .3*40 = 452 Opteron yrs)       |  |
| 768            | 76.80                  | 69.3 (?)(~13           | .93*452=6296 Opteron yrs)      |  |
|                |                        | ([7 Jan 2010           | ] 2100 AMD64 years)            |  |
| 1024           | 86.76                  | (1 million A           | MD64 years)                    |  |
| 2048           | 116.88                 | (billion-mil           | lion AMD64 years)              |  |

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- small exponents
- common modulus
- timing analysis
- simple power analysis
- diffeential power analysis
- fault injections
- branch predictions
- accelerators: cluster, FPGA, GPU
- quantum computers