

New Polyester Fibrous Foam To replace Foamed Polyurethane

Mikito Yokoyama TEIJIN FIBERS LIMITED

elk® innovative fibrous foam for the train seats

Contents

- 1. What's elk®
- 2. Characteristics of elk®
- 3. Train seat business of elk® in Japan
- 4. elk® supply pattern for the world
- 5. Conclusion

Background of the elk® development

		Polyurethane foam	Requirements for elk®
Cushioning		Good	Good
Durability		Good	Good
Weight	Energy conservation problem	Heavy	Over 20% Lighter than PU foam
Comfort	Stuffy	No good (Non-breathable)	Good (Breathable)
Toxic gas	Vehicle fire problem	HCN, CO, CO2	CO, CO2
Recyclability		NO	OK

What's elk®

PAT NO. JAPAN: 2548477

USA:07/809524

EU:0483386A1

	Special Binder fiber for elk®	Matrix fiber (Polyester)
Design	Amebic Structure binding point	Tangle Spring Structure
Figure	Cross-section of fiber Polyester Elastomer Polyester	Side view of fiber
	Tough and flexible bonding point	Dispersion of load

Characteristics of elk® Comfort: No accumulate sweat vapor

elk®

Polyurethane Foam

Characteristics of elk® Comfort: No accumulate sweat vapor

Characteristics of elk® Compressive resilience and Density

Polyurethane Foam

Characteristics of elk® Smoke & Combustion gas

JIS K-2541	HCN	CO	CO ₂
elk®	Non-detection	34	243
PU Foam	7.2	60	250
Limit of detection (mg/g)	0.005	-	-

Characteristics of elk® Flame retardancy

In the Japanese test

Applications	Test method	Result
Bedding	45°Methenamine	Passed
Automotive	FMVSS 302	Self-extinguishing
Japanese Railway	A-A(Alcohol)	Passed
Othoro	UL94 HBF	Passed
Others	UL94 HF-1	Passed

Characteristics of elk® Flame retardancy

In the BS6853 test

	Test method	Result	Remark
Back	BS 476: Part 6	Rejection	There is possibility of the pass by a combination with FRL
	BS 476: Part	Invalid	melting
	7	Result	meiting
	Annex B Toxicity test	Pass	
	BS 4/6: Part	invalid	melting
	7	Result	meiting
Base	Annex B Toxicity test	Pass	
Assembly	Annex D Toxicity test	Pass	

Characteristics of elk® Recyclability: Recycling in Japan

Train Seat Market and share of elk® in Japan

Quantity of seat production by Japanese railway companies (2009)

elk® has already won 40~50% share of the market.

- Light weight
- Recyclable
- A little toxic gas & smoke

Japanese Railway Companies

- # JR ("Japan Railway") companies:
 - East/Central/West/Shikoku/Kyushu/Hokkaido
- # In Tokyo area:
 - Odakyu / Tobu / Seibu / Keio / Tokyu, etc.
- **In Nagoya area: Meitesu / Kintetsu, etc.**
- # In Osaka area: Nankai / Hanshin, etc.
- **■** Urban metro networks: in Tokyo / Osaka / Nagoya,

elk® Supply Patterns

We can supply staple fibers, nonwovens, or molded seats from Japan to all over the world.

Conclusion

elk® is the material of choice for the train seats.

Breathability, Light weight (less by 20~30%), Environment-friendly (A little toxic gas & smoke, Recyclable)

elk® has won 40~50% share of the market in Japan.

It will propose the train seat market in the world in the future.

Thank you for your kind attention.

Human Chemistry, Human Solutions