Thermoplastic Sheet for Railway Interiors

Railway Interiors Expo Asia

2010, November 16

Wim Van Eynde

Summary of this presentation

- Thermoplastics in transportation
- Why thermoplastics are new to the railway industry
- Specific requirements for Railway Mass Transit
- Developments in thermoplastic sheet
- The advantage of thermoforming
- Reference applications

Thermoplastics in Transportation

- On Land
 - > Automotive
 - Commercial Vehicles
 - ➢ Mass transportation

In the Air

1835

Why are thermoplastics new to the Railway Industry?

- The nature of the Rail Industry
- Limited numbers of units
- Limited availability of plastics that meet the specifications

Specific requirements to Railway Mass Transit

Burning behaviour

- Difficult ignition
- Low flame spread
- ➢ Low smoke density
- > Low smoke toxicity
- > No burning droplets
- Impact resistance
- UV resistance
- Anti Graffiti
- Light weight
- Recycable

Semi Finished Products Wim Van Eynde, Nov. 16 2010

Passenger safety

- Durability
- Durability
- Vandalism resistant
- Energy saving
- Cradle-to-cradle

Requirements	Branch	Properties
UL 94 V-0 @	E/E	Ignition & flame spread
DIN 5510-1 / DIN 54837 DB-Brandschacht	Rail, Germany	Flame spread, smoke density, dripping behaviour
DIN 5510-2 / ISO 5659-2	Rail, Germany	Smoke toxicity
NF P 92-507 Epiradiateur test	Rail, France	Flame spread & dripping behaviour
NF X 70-100 / NF X 10-702 Smoke toxicity / density	Rail, France	Smoke density & toxicity
Docket 90A / ASTM E162 Radiant panel test	Rail, US	Flame spread
Docket 90A / ASTM E662 Smoke density	Rail, US	Smoke density

Semi Finished Products

Wim Van Eynde, Nov. 16 2010

Requirements	Branch	Possible classifications of thermoplastics
UL 94 V-0 @	E/E	V-0 V-2
DIN 5510-2 / DIN 54837 DB-Brandschacht	Rail, Germany	S4-SR2-ST2 S3-SR2-ST2
DIN 5510-2 / ISO 5659-2	Rail, Germany	FED(tzul) < 1
NF P 92-507 Epiradiateur test	Rail, France	M1 M2
NF X 70-100 / NF X 10-702 Smoke toxicity / density	Rail, France	F1 F2
Docket 90A / ASTM E162 Radiant panel test	Rail, US	Ls < 35 No burning droplets
Docket 90A / ASTM E662 Smoke density	Rail, US	Ds 1.5' < 100 Ds 4.0' < 150

Semi Finished Products

Wim Van Eynde, Nov. 16 2010

Requirements	Branch	Properties
pr-EN45545	Rail, Europe	Ignition Flame spread Smoke density Smoke toxicity Burning droplets

ch of thermoplastics
rope HL3 ? HL2 ?

Specific requirements to Railway Mass Transit

Burning behaviour

- Difficult ignition
- Low flame spread
- Low smoke density
- > Low smoke toxicity
- > No burning droplets
- Impact resistance

Passenger safety

Durability

Developments in thermoplastic sheet Impact resistance

Specific requirements to Railway Mass Transit

Burning behaviour

- Difficult ignition
- Low flame spread
- Low smoke density
- > Low smoke toxicity
- > No burning droplets
- Impact resistance
- UV resistance

Passenger safety

Durability

Durability

Developments in thermoplastic sheet UV resistance

QUV-weathering test

without protective layer

with protective layer

Specific requirements to Railway Mass Transit

Burning behaviour

- > Difficult ignition
- Low flame spread
- Low smoke density
- > Low smoke toxicity
- > No burning droplets
- Impact resistance
- UV resistance
- Anti Graffiti

Passenger safety

- Durability
- Durability
- Vandalism resistant

Developments in thermoplastic sheet Anti-graffiti

Developments in thermoplastic sheet Anti-graffiti

PVDF top layer

- Less adhesion and dirt pick up
- Excellent chemical resistance
- Excellent UV stability
- Easy thermoformable
- Cost effective

Anti - Graffiti Test NF F 31-112

Results on sheets with PVDF top layer

graffiti	cleaning agent (class G)	Δ E (class G)
Permanent marker	G1	< 1
Alkyd paint	G1	< 1
Acrylic paint	G1	<1
metallic celluloze paint	G1	<1
tar based paint	G1	<1

Semi Finished Products

Wim Van Eynde, Nov. 16 2010

Specific requirements to Railway Mass Transit

Burning behaviour

- > Difficult ignition
- Low flame spread
- Low smoke density
- > Low smoke toxicity
- > No burning droplets
- Impact resistance
- UV resistance
- Anti Graffiti
- Light weight

Passenger safety

- Durability
- Durability
- Vandalism resistant
- Energy saving

Developments in thermoplastic sheet Light weight

Interior cladding

- Thermoplastic sheet typically has a density of 1.1 -1.4 g/cm³
 → much lower than metal or GRP
- Thermoplastic sheet allows for thin gauge constructions
 → reducing thickness = reducing weight

Developments in thermoplastic sheet Light weight

Glazing

Polycarbonate has half the weight of glass

Example

- Amtrak Makrolon side window
- Dual glazed, 2 x 6 mm Makrolon sheet
- Weight savings: approx. 150 kg/wagon
- Additional advantage: vandalism proof

Specific requirements to Railway Mass Transit

Burning behaviour

- > Difficult ignition
- Low flame spread
- Low smoke density
- > Low smoke toxicity
- > No burning droplets
- Impact resistance
- UV resistance
- Anti Graffiti
- Light weight
- Recycable

Semi Finished Products Wim Van Eynde, Nov. 16 2010

Passenger safety

- Durability
- Durability
- Vandalism resistant
- Energy saving
- Cradle-to-cradle

Developments in thermoplastic sheet Recyclable

Thermoplastics can be recycled

- Cradle-to-cradle concepts become possible
- Existing network of recycling companies is well established
- Major advantage over GRP systems

The advantage of thermoforming

- Versatile process
- Simple to complex components
- Large parts
- Low cost moulds allow cost efficient production of small and medium series
- Freedom of design
- Through coloured sheets/parts

Vacuum Forming

Vacuum draws the part against the mold "cavity"

Bayer MaterialScience

Wim Van Eynde, Nov. 16 2010

Semi Finished Products

Pressure Forming

Air pressure presses the sheet against the mold "cavity"

Twin Sheet Thermoforming

- Thermoforming of two sheets simultaneously
- Multiple colors or textures

Finishing

Trimming

Applications

Wim Van Eynde, Nov. 16 2010

DCC

Thank You for Your Attention

Semi Finished products