

bre

Opportunities for materials' selection and railcar fire safety

Prof David Charters, PhD, CEng, FIFireE, MIMechE Director of Fire Engineering

Visiting Professor of Fire Risk Analysis at the University of Ulster

Overview

- 1. Introduction
- 2. Fire safety in tunnels
- 3. Fire engineering of tunnels
- 4. New opportunities in railcar design
- 5. Summary

A unique perspective

Recent tunnel fires include

Date	Tunnel		Dead
18/02/03	Taegu, S. Korea		197+
25/01/03	Chancery Lane, London Underground, England		
03/11/02	Homer Tunnel, New Zealand [5]		
24/10/01	St Gotthard, Switzerland	R	11
18/07/01	Baltimore (Howard Street), USA	Т	
27/11/00	Laerdal, Norway	R	
11/11/00	Kaprun, Austria	Т	158
29/05/00	Cross Harbour Tunnel, Hong Kong [6]	R	
29/05/99	Tauern, Austria [7]		12
24/03/99	Mt Blanc, France/Italy [8]	R	39
18/11/96	Channel Tunnel, England/France [9]	Т	
28/10/95	Baku, Azerbaijan	М	289
15/10/94	Kingsway (Mersey) Tunnel, England [10]	R	
01/03/94	Huguenot Tunnel, South Africa [11]	R	1
19/02/91	Bethnal Green, London Underground, England [12]	М	
16/01/91	Zurich, Switzerland [13]	Т	
18/11/87	Kings Cross, London Underground, England [14,15]	М	31
17/01/79	San Francisco BART, USA [16]		1

<u>Key:</u>

M = Metro

R = Road

T = Train

Variations in tunnel fire safety challenge

Item	Metro	Rail	Road
Length	5 to 600 meters mean	30 m to about 50 km	200 m to about 20 km
	between 2 stations		
Location	city	city, country	city, country
Exits	stations	tunnel ends	tunnel ends, shelters
			with access to other
			tunnels
Possibilities to	very narrow pathways	narrow pathways	wider pathways
move from			
accident place			
to sate exit		101.00.1.1	
Intervention	5 to 10 minutes	10 to 60 minutes	5 to 10 (firemen at the
time of firemen			end) to 60minutes
Fire heat	7 to 20 MW	10 to 200 MW(TMD)	2 to 200 MW(TMD)
release rate	fire load under control	fire load depends on	fire load depends on vehicles
		vehicles (their load)	(their load)
People	100 to 250 per wagon	150 per wagon	1 to 100(bus)
Traffic control	strict control	strict control	no control to individual drivers
Communica-	driver or interphone	driver of the train	each driver of each
tion for alarm			vehicle
Materials	fire resistance standard	fire resistance	no standard
		standard	
Firemen	stations	ends of tunnel cannot	ends of tunnel,
intervention	cannot use cars	use cars	special accesses

Standard small-scale tests

- Checks conformity to regulator requirements
- Spread of flame
- Limited data

'Always built and managed as intended?'

"There is hardly anything in the world today that some man can't make just a little bit worse and sell just a little bit cheaper, and the people who buy on price alone are this man's lawful prey."

John Ruskin (1819 – 1900)

Independent 3rd Party approval

www.redbooklive.com

London Underground metro car used for the test

Time (s)

BS 7974

British Standard BS 7974 - Code of Practice on the Application of fire safety engineering principles to the design of buildings

Published Documents PD 7974:
Part 0 Introduction
Part 1 Initiation and development of fire
Part 2 Smoke movement beyond the room
of origin
Part 3 Response of structure to fire
Part 4 Activation of detection and
suppression systems
Part 5 Fire service intervention
Part 6 Evacuation
Part 7 Fire risk assessment

Fire safety – hierarchical approach (Shields et al)

ON CERTIN

LPCB

Time line analysis

Station/tunnel fire strategy

Ignition and fire growth

Building design fire scenarios:

- Ignition where and when?
- Fire growth rate?
- Peak rate of heat release?
- Duration?

Typical phases of fire development

Smoke movement

- Temperature?
- Depth?
- Toxicity?
- Visibility?
- Radiation?

Total Time Steps: 23					
Begin	TIME	STEP	End		
20	20	9	00		
SOLUTION TIME					
20	20	9	00		
Apply					
SWEEP CONTROL 🔲 Use Delta Time					
🔽 Build		1			
Skip: 1	<u>+</u>				
Leon I	— <u>+</u>				

300

Tunnel fires - what if we have more ventilation?

Structural response

Fire resistance:

- Fire severity
 - Temperature
 - Duration
- Failure:

- Time
- mode
- extent

Some examples of peak rate of heat release

Rail System	Vehicle	Peak Heat Output (MW)
1. British Rail	415	16
2. British Rail	Sprinter	7
3. MTRC Hong Kong	Commuter vehicle	1.4
4. MTRC Hong Kong	Commuter vehicle	2.0

Key:

1 Old passenger carriage with upholstered seating and combustible linings

- 2 Modern carriage with fire retardant upholstered seating
- 3 Carriage with metal seating, etc
- 4 Under-carriage fire scenario

Design fire

Sources of information:

- Literature review
- Historical data
- Small scale testing
- Furniture calorimetry
- Full scale experiment
- Computer modelling
- 'Expert judgement'

Small-scale tests - Cone

ISO 5660:

Fully developed fires only

ISO 5660 Method

ISO 5660 can give valuable insight into peak rate of heat release, though it assumes that:

- There is a fully developed fire
- Radiant heat flux throughout the whole space at the same time
- The radiant heat flux is high compared to that for the onset of flash-over (50kW/m2 vs 20kW/m2)
- All material surfaces along the carriage are involved at the same time
- There is a large ignition source
- Flame spread and fire growth are very rapid
- There is no burn-out of materials
- There is no ventilation control of the fire
- There is no asymmetry in fire development

Furniture calorimetry

Design fires

- Design fires are key to the adequacy of tunnel fire strategies
- 2. Many factors affect the selection of appropriate design fires
- **3.** Projects using a similar design fire approach include:
 - Dublin Metro West
 - Dublin Metro North
 - DLR Reassessment for fire safety standards
 - Channel Tunnel Rail Link
 - ...etc

Computer modelling

Network Rail fire risk management

Risk-informed fire safety management:

- QRA 90 assets:
 - Life safety
 - Asset protection
 - Business continuity
- 80% of benefit from 15% of investment
- £3m investment
- Savings:
 - £22m cost (poor investment)
 - £14m every year

Improved punctuality!

Charters and Wu 2002

Overview

- 1. Introduction
- 2. Fire safety in tunnels
- 3. Fire engineering of tunnels
- 4. New opportunities in railcar design
- 5. Summary

Summary

- The number, size and complexity of tunnels and underground spaces is increasing globally
- Fire safety design is key to the safe future operation of tunnels
- Railcar design and materials' selection is crucial to fire safety engineering in the design and operation of tunnels
- Exciting new opportunities for the design of railcars to be holistically integrated into the system within which they will operate

Thank you for your attention

Any Questions?

chartersd@bre.co.uk

