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ABSTRACT

A semi-experimental direct methanol fuel cell (DMFC) system for transient behaviors on describing cell temperature, methanol crossover, water crossover and electric power is presented. By different operating manners, the new input determinations are addressed. To investigate the performance of DMFC systems, the presented fuel and exergetic efficiencies for the specific probe of energy utilization are evaluated. 
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1. INTRODUCTION
For most DMFC systems, the performance enhancement usually depended on high methanol feed concentration. Recently, Ko et al. [2008] indicated that anode feed concentration had a significant larger impact on methanol crossover, temperature and cell voltage than anode and cathode flow rates. Xu et al. [2005] used the numerical algorithm to decide the optimal feed concentration for the DMFC model in regard to the highest power density output. The exergy analysis is popular approach to identify process efficiency and accounts for impact on the surroundings [Bakshi and Fiksel, 2003].  Based on the second law of thermodynamics, exergy or available energy is the fraction of energy that can do useful work. It likes a measure to evaluate chemical, thermal, and electrical energy such that the quality of exergy loss can be found, and provide a clue for improving the conversion system. Wang and Wang [2006] used exergy analysis to determine the efficiencies, exergy loss and performance for proton exchange membrane fuel cells (PEMFC). Li et al. [2008] demonstrated the exergetic efficiencies for the steady-state DMFC model under consideration of methanol crossover.

Since methanol transport across the membrane of DMFC may cause depolarisation losses at the cathode and conversion losses in terms of lost fuel leading to poor performance, In additional, a large amount of water may increase the risk of water flooding at the cathode and degrade the stability of the overall system operation. Since operating conditions of methanol and water crossover may directly affect overall system performance, in this article the state-space representation of a DMFC system is used to describe the complete dynamic characteristics and establish the specific input-to-output relationship. The operating manner is based on how to reduce methanol crossover or water crossover. By exergy analysis, the defined fuel and exergetic efficiencies provide a new assessment technique on energy utilization. Moreover, the feasible input manipulation is developed and successfully verified by the simulation tests of an illustrative DMFC model. 

2.  NON-IOSTHERMAL DMFC SYSTEM
When methanol/water as a fuel and air is supplied to a DMFC to generate electricity, heat and water are generated as byproduct. According to the experimental-based DMFC modeling [Sundmacher et al., 2001], the isothermal dynamics are composed of:

(i) mass balances for the anode compartment
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(ii) mass balances for the anode catalyst layer
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(iii) charge balances
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where 
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 represent the rate equations of primary electrode reactions at the anode and cathode, respectively, described by
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where the surface fractions 
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are determined by solving the following algebraic equations, 
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Moreover, the methanol crossover 
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where the Peclet number Pe is defined as
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If the overall cell voltage is described by
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thus the nonisothermal model for DMFC by overall energy balance is shown as follows.

(iv) energy balance
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where i=CH3OH, H2O(l), CO2, j=O2, N2, H2O(g). Assuming that the compositions at the cathode are assumed to be constants, the inlet flow rate at the anode/cathode is assumed to be equal to the corresponding outlet flow rate, and the system is adiabatic. For water crossover through membrane, the experimental-based model is expressed by 
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Notably, the presented dynamic model is a reduced, one-dimensional system under prescribed assumptions. Furthremore, the systematic approach by using the state-space representation is introduced,
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where 
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 represents the state vector of the compositions at the anode compartment and the anode catalyst layer, charges at the anode and cathode, and cell temperature. 
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 represents the input vector of the system, and the output vector function is specified by 
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3. SYSTEM ANALYSIS 

In this article, the steady-state and unsteady-state analyses of dynamic characteristics of DMFC are employed. Through changeable input manipulation, the negative effects of methanol crossover and water flooding at the cathode (water crossover) are addressed If the methanol feed concentration increases, the voltage drop, shown in Fig. 1, is improved at high current density. Fig. 2 shows that the higher cell temperature induces the higher power output at the same current density.
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Figure 1: Steady-state profile for cell voltage vs. current density under different methanol concentration
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Figure 2: Steady-state profile for power density vs. current density under different cell temperature 

Remark 1: By steady-state analysis, methanol feed concentration strongly affect cell temperature, methanol crossover and power density. In general, the heat radiation produced by permeated methanol is used to warm up the power system, but it should be paid attention on the operating temperature of DMFC due to different rates of methanol crossover.

Furthermore, the interaction between input and output, i.e. 
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, need be investigated by following unsteady-state analysis. The selected input variables including methanol feed concentration (
[image: image32.wmf]3

,

in

aCHOH

x

), anode inlet flow rate (
[image: image33.wmf]in

a

n

&

), cathode inlet flow rate (
[image: image34.wmf]in

c

n

&

), and cathode pressure (
[image: image35.wmf]c

P

) are individually manipulated, respectively. Fig. 3 show that methanol feed concentration can individually regulate water crossover, but the large methanol feed concentration may induce undesired water crossover. 
[image: image36.jpg]Methanol concentration (mollrﬁ)

1000

900

800

700

600

500

400

300

200

100

—

~ Methanol concentration (mol/ma)

— Water crossover (mollmz/s)

8.1

50

L
100

L
150

L
200

I
250
Time (s)

!
300

!
350

L
400

L
450

50%

Water crossover (mollmz/s)




Figure 3: Unsteady-state profile for methanol feed concentration vs. water crossover 

Similarly, Fig. 4 show that water crossover cannot be reduced by increasing anode inlet flow rate.
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Figure 4: Unsteady-state profile for methanol feed concentration vs. anode inlet flow rate 

Moreover, Fig. 5 show water crossover can be reduced by increasing cathode inlet flow rate and Fig. 6 indicated that the methanol crossover can be reduced by increasing cathode pressure because the diffusion rate of fuel in the membraneis strongly affected by cathode pressure. 
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Figure 5: Unsteady-state profile for cathode inlet flow rate vs. water crossover 

Remark 2: Since water crossover may induce water flooding, and methanol crossover may cause voltage drop and fuel loss, both water and methanol crossover fluxes can be treated as physical constraints of the DMFC system operation. By unsteady-state analysis, three manipulated inputs, 
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, cannot improve the power performance due to undesired water or methanol crossover flux. 
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Figure 6: Unsteady-state profile for cathode pressure vs. methanol crossover 

4. EXERGY EFFICIENCIES 

Regarding the DMFC system efficiencies, the chemical exergy of fuel is mainly converted into electricity and heat, a portion of thermal exergy including methanol crossover oxidation is used to heat the stack, and other portion becomes the exergy loss. Therefore, the total exergetic efficiency is described by
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and the fuel efficiency is formulated by 
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Remark 3: Exergy involves different effects between fuel, electricity, heat and exergy loss. Both fuel and exergetic efficiencies provide a new assessment manner on energy utilization. In our formulations, the total exergetic efficiency is treated as a measure of exergy destruction, and the fuel efficiency is described as a measure between the electric power and power loss by methanol crossover.  

Fig. 7 shows that cathode pressure increased can enhance the total (exergetic) efficiency of the DMFC system, and Fig. 8 shows that the inlet flow temperature at the anode can improve the total efficiency of the DMFC system. From the aspect of energy utilization, the manipulation of both variables, 
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Figure 7: Steady-state profile for total efficiency under different cathode pressure 
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Figure 8: Steady-state profile for total efficiency under different different inlet flow temperature at the anode

When the current load is increased stepwise, Fig. 9 indicated that the fuel efficiency can be increased step-by-step if the isothermal system can be achieved by manipulating the variable 
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. Notably, the total exergetic efficiency can be kept at 50% above when the high current is demanded. 
5. CONCLUSIONS

In this article, a well-developed mathematical model for a nonisothermal DMFC is introduced. To study specific constraints on methanol crossover and water flooding, the systematic analysis by virture of steady-state analysis and dyanmic simulation provides an alternative algorithm to determine feasible operating manner. Through exergy analysis both fuel efficiency and totla exergetic efficiency are used to evalaute the degree of energy utilization. In our study and experiences, both cathode pressure and inlet flow temperature at the anode are recommended as adequate manipulating variables. It implies that the cell temperature should be regulated at the prescribed setpoint, the total exergetic efficiency can be kept at the desired percentage, but the methanol crossover should be restricted to improve system efficiency. 
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Figure 9: Unsteady-state profile for fuel efficiency vs. total efficiency under different current load 
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