自 次	頁次
一、目的	
二、過程	
2.1 三菱重工總公司	
2.2 東京電力公司參訪研習	
2.2.1 東京電力公司能源政策	4
2.2.2TEPCO 火力發電廠設備	5
2.2.3 火力發電設備	·····7
2.2.4 小結	
2.3 三菱重工長崎造船廠	
2.3.1 中九、十機鍋爐飼水泵之控制現有問題討論	9
1. BFPT 控制系統架構	
2. EG3P 液壓驅動器	
3. AOP 備用台起動之控制邏輯······	13
4.中九、十機 BFPT 之 COLD/HOT START 規劃設計	13
5. BFPT 之 EOP 緊急起動之控制邏輯之瑕疵 ········	14
6. BFPT 之 HP/LP 關斷閥伺服馬達電磁閥線圈壽命…	14
7. 現場單一偵測元件之保安設計不佳	15
8. 飼水泵和 DCDAS 之運轉設定不一致	
9. BFPT 跳脫電磁閥之電源設計規劃問題	
2.3.2 IGCC 示範電廠簡介	····17
1. 整體煤氣化複循環發電	
2. 株式會社 Clean Coal Power 研究所之概要	
3. IGCC 的發展史 ········	
4. IGCC 的特徵 ·······	19
5. IGCC 具有的優點	20
6. IGCC 實証試驗設備的概要 ······	
7. IGCC 與燃煤發電技術之綜合比較	
三、心得與建議	24
四、結論	24