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Abstract -- Advanced Studies of selection schemes between
neural-network (NN) and multiple-regression (MR) outputs of
a virtual metrology system (VMS) are presented in this paper.
Both NN and MR are applicable algorithms for implementing
VM conjecture models. But a MR algorithm may achieve better
accuracy only with a stable process, whereas a NN algorithm
may has superior accuracy when equipment property drift or
shift occurs. To take advantage of the merits of both MR and
NN algorithms, the simple-selection scheme (SS-scheme) was
proposed in CASE 2008 to enhance virtual-metrology (VM)
conjecture accuracy. This SS-scheme simply selects either NN
or MR output. Recently, with advanced studies, a
weighted-selection scheme (WS-scheme), which computes the
VM output with a weighted sum of NN and MR results, has
been developed. Besides the example with the CVD process of
fifth generation TFT-LCD used in the CASE 2008 paper, a new
example with the photo process is also adopted in this paper to
test and compare the conjecture accuracy among solo NN, solo
MR, SS-scheme, and WS-scheme. One-hidden-layered
back-propagation neural network (BPNN-I) is adopted for
establishing the NN conjecture model. Test results show that the
conjecture accuracy of the WS-scheme is the best among those
of solo NN, solo MR, SS-scheme, and WS-scheme algorithms.

Index Terms — Virtual metrology (VM), dual-VM outputs,
simple selection scheme (SS-scheme), weighted selection scheme
(WS-scheme).

L INTRODUCTION

As the size of electronic devices shrink gradually,
wafer-to-wafer (W2W) control has become more essential for
critical stages in improving semiconductor manufacturing yield rate
[1], [2]- To achieve the requirement of W2W control, the metrology
values of each wafer needs to be obtained. However, it is very
expensive and time-consuming to acquire the metrology values of
each wafer by actual measurement. A feasible solution is to apply
virtual metrology (VM) technology, which can conjecture the
processing quality of each wafer according to the process data of a
production tool without physically conducting actual measurement

[2]-[4].

Khan et al. published twin papers in November 2007 [5] and
2008 [6] to develop a distributed VM architecture for fab-wide VM
and feedback control of semiconductor manufacturing processes
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using recursive partial least squares (PLS). Both [5] and [6] stated
that the VM conjecture accuracy will affect the controlled process
outputs. Besides, Wu et al. [7] studied the performance of
run-to-run (R2R) control subject to metrology delay and concluded
that applying VM to remedy the metrology-delay problem is
justified if the error of the VM method is less than the error caused
by stochastic process noise. In other words, with accurate and
prompt VM outputs, W2W control can be economically achieved in
current semiconductor manufacturing processes. Therefore, to
implement VM for supporting R2R/W2W control, high conjecture
accuracy is the key issue.

To achieve high VM conjecture accuracy, adopting
feature/variable selection methods to filter out noise of process data
are possible approaches. Ko et al. [8] proposed the so-called
autokey method to choose key parameters of VM from the
manufacturing data via a hierarchical clustering approach and
according to their correlation coefficients. Also, Lin et al. [9]
developed a NN-based key-variable selection method for enhancing
VM accuracy. On the other hands, this paper proposes selection
schemes of dual VM outputs to improve VM conjecture accuracy.

As VM is practically applied, no actual metrology value can be
used to evaluate conjecture accuracy. Thus, the VM conjecture
value needs an accompanying reliance index (RI) to evaluate its
reliance level [11]. The RI is defined as the overlapping-area value
between the standardized statistical distribution of the
neural-network (NN) conjecture value and the multiple-regression
(MR) predictive value [10], [11]. In other words, if a VMS
possesses the RI scheme, then this VMS should have both the NN
and MR VM results; while NN conjecture value is assigned as the
default VM output and MR predictive value is considered as the
reference output [10], [11]. However, as compared in [12] and [13],
the MR algorithm may achieve superior accuracy with a stable
process (such as low-level data variance), whereas the NN
algorithm may have better accuracy when high-level data variance
(e.g. process tool property drift or shift) occurs. To take advantage
of the merits of both MR and NN algorithms, the simple-selection
scheme (SS-scheme) was first proposed to enhance VM conjecture
accuracy [14]. This SS-scheme simply selects either NN or MR
output. Recently, to further improve the accuracy and with
advanced studies, a weighted-selection scheme (WS-scheme),
which computes the VM output with a weighted sum of NN and
MR results, is presented.

One-hidden-layered back-propagation neural network (BPNN-I)
is adopted as the algorithm for establishing the NN conjecture
models. The CVD and photo processes in a fifth generation
TFT-LCD factory are adopted as illustrated examples to test and
compare the conjecture accuracy among solo-NN, solo-MR,
SS-scheme, and WS-scheme. Test results show that the conjecture
accuracy of the WS-scheme is the best among those solo-NN,
solo-MR, SS-scheme, and WS-scheme algorithms.

The remainder of this paper is organized as follows. Section 2
details the SS-scheme and WS-scheme between NN and MR
outputs. Section 3 then presents and compares the experimental
results among solo-NN, solo-MR, SS-scheme and WS-scheme. The
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implications of experimental results are also discussed here. Finally,
a summary and conclusion are made in Section 4.

IL. SS-SCHEME AND WS-SCHEME

Both the proposed SS-scheme and WS-scheme are all
composed of an off-line classification flow of modeling data sets
(as shown in Fig. 1). Then, the on-line selection flows of
SS-scheme and WS-scheme are depicted in Figs. 2 and 3,
respectively. They are described below.

2.1 Off-line Classification Flow of Modeling Data Sets

The entire modeling data sets are first classified into the NN
group and the MR group based on the modeling error of each data
set. The procedure shown in Fig. 1 is detailed as follows.

eStep 1) To create the NN and MR models, n sets of historical data
are collected, including process data (x,;, a = 1, 2, ..., n; j = 1,
2, ..., p) from a production tool and the corresponding metrology
data (v, a =1, 2, ..., n) from a metrology tool, where each set of
process data contains individual parameters (from parameter 1 to
parameter p). The correlation between the process and metrology
data of each set should be assured before considering this set as a
valid modeling set.

eStep 2) Before the NN conjecture model and MR predictive
model are established, the process and metrology data have to be
standardized by Z-score. The equations for standardizing the
process and metrology data are listed as follows [11].

7 XX, a=1,2, .,mj=1,2, .., p )

X{h/ O-X/
_ 1 b
Xj=—\x +x +..+x (2)

nt i 2, nj
B A )

z =% -y (4)

Va o,
_ 1 (5
y:;()’j+)’2+"'+)’n) )

1 —\2 —\2 - 2]

ffy=\/ﬁ (=7 + (= 3F ++(3,- ) (6)
where

X, ; jth process parameter in the ath set of process data;

7 standardized jth process parameter in the ath set of

o process data;

xX; mean of the jth process data;

o, standard deviation of the jth process data;

Ve ath actual metrology value;

zZ, standardized ath actual metrology value;

y mean of all the actual metrology values;

G, standard deviation of all the actual metrology values.

oStep 3) The n sets of standardized process data (Z ., a = 1,
.

2, ...,m; j=1,2, ..., p) and the standardized actual metrology values
(Zy ,a=1,2, .., n) are adopted to create the NN conjecture

model and MR predictive model.

o Step 4) Compute the NN and MR modeling errors of each sample.
The NN and MR modeling errors of each sample are depicted as
follows.

ey FAy,=Iy @ =12 ...n )
&, :Iya—f/, ,a=1,2, .., n @)

where ¢,, and ¢, represent the NN modeling error and MR

modeling error for the ath sample, respectively; y, is the actual
metrology value; ., and P  are the NN and MR VM values,

respectively.

oStep 5) Check whether &, is less than or equal to &, for

each sample.

oStep 6) If &£, is less than or equal to &, , then this modeling
sample is distributed to the NN group. Otherwise,
this modeling sample is distributed to the MR group.

eoStep 7) Assume that s and ¢ sets of modeling sample data are
contained in the NN group and MR group, respectively. Thus, the s
and ¢ sets of standardized model parameters are defined as

Z, Z[Z.w Zy)s o Z”]T (for NN group) and

VA :|:Zm Z ., ZW]T (for MR group). Here, er,,/ and Zw,

are the means of the standardized jth process parameters in the NN
group and MR group, respectively.

2.2 On-line Selection Flow of the SS-scheme

Figure 2 shows the on-line selection flow between the NN and
MR outputs for each conjecture sample (denoted the SS-scheme).
The Mahalanobis distance (MD) between the conjecture sample
and standardized model parameters of NN or MR group is first
calculated. Then, the NN or MR output is chosen depending on
which computed MD is smaller. The flow of the SS-scheme shown
in Fig. 2 is detailed as follows.
oStep 1) Collect the newly (Ath) input set of process data

Xﬁz[x X

ZAE IR

"X, }T as the conjecture sample.
AP

eStep 2) Compute the data

T
z,=[2,.2,,..2,])

oStep 3) Calculate the Mahalanobis distance between Z and Z _,
and between Z, and Z as follows [11].

D, =(z,-2) R, (2,-2,) (9)
D, =(Z-2)R"(2-2) (10)

where D;l represents the MD between Z and Z D’;

standardized Ath set process

depicts the MD between Z and Z , RNfl and R;I are the

inverse matrixes of correlation coefficients among the standardized
parameters in the NN group and MR group.

oStep 4) Check whether D

NA
eStep 5) If Step 4 is yes, then the NN output is selected, otherwise
the MR output is chosen.

is less than or equal to D, .
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1. Collect process and
metrology data (x,, ya),
a=1,2, -, nmj=1,2, -, p

L 2

2. Standardize the process and
metrology data (Zx,;, Zy.)
1

) 2 v

3a. Create the NN model

3b. Create the MR model

. Z v

4a. Compute the NN 4b. Compute the MR
modeling error of each modeling error of each

sample (€E,) sample (&r,)
| ]

<o >0

6a. Distribute (Zx,;, Zy.) 6b. Distribute (Zx,, Zy.)
to the NN group to the MR group

4 L 2

7a. Compute the Z 7a. Compute the Z

YES

End End
Fig. 1. Off-line Classification Flow of Modeling Data Sets

1. Collect the newly input set
of process data X,

v

2. Compute Z

v

3. Compute D;, and D’,

NO
\ 4

5b. Select MR
predictive value

Sa. Select NN
conjecture value

End End

Fig. 2. On-line Selection Flow of the SS-scheme
2.3 On-line Selection and Computing Flow of the WS-Scheme

Figure 3 depicts the on-line selection flow with computing the
weighted conjecture value for each conjecture sample (denoted the
WS-scheme). The SS-scheme simply selects the VM conjecture
output from either NN or MR result therefore the effect of
accuracy-enhancement may be too extreme. To remedy this

problem for further improving the VM conjecture accuracy, the
WS-scheme is adopted by considering the weighted sum of NN and
MR outputs. The selection and computing flow of the WS-scheme
shown in Fig. 3 is detailed as follows.

oSteps 1) ~ 3) are the same as those of the SS-scheme.
oStep 4) Calculate the weighted conjecture value (, ) as

follows.

Py (1

where j ~and j are the NN and MR VM outputs,
respectively.

As shown in (11), the weighting of the NN component is
determined by the ratio between D’ and the sum of D, + D’ .
On the contrary, the weighting of the MR component is calculated
by the ratio between D; and the sum of D, + D’ .

1. Collect the newly input set
of process data X,

v

2. Compute Z,

v

3. Compute D;, and D,

Y

4. Compute Weighted
Conjecture Value y,,

End

Fig. 3 On-line Selection and Computing
Flow of the WS-Scheme

I1I. ILLUSTRATIVE EXAMPLES

Two examples are applied to be tested and compared. All the
experimental data were collected from a CVD tool (for Example 1)
and a photo tool (for Examples 2A and 2B). These CVD and photo
tools are practically operating in a fifth generation TFT-LCD
factory in Taiwan. In Example 1, to assure the quality of glass, 19
positions (shown in Fig. 4(a)) are measured on 19”-product glass
for a single shoot CVD operation. In Examples 2A and 2B,
14.1”-product glass is divided into two shots for photo processing.
Each shot has 8 measurement positions, as depicted in Fig. 4(b).
Shot 2 is selected for Example 2.

Example 1 involves 92 sets of virtual cassettes and each virtual
cassette may contain up to 100 pieces of glass. The last glass in a
cassette is selected as the sample one, whose thickness value is
measured to monitor the quality of the whole cassette. Thus, those
process data (X, i =1, 2, ..., 91) of the first 91 pieces of sampling
glass and their corresponding actual metrology values (y;, i = 1,
2, ..., 91) are adopted for establishing the NN conjecture and MR
predictive models.
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The 92nd virtual cassette that contains 25

pieces of glass is used for the VM conjecturing ) "
test. For evaluating the conjecture accuracy, not

only the regular sampling glass but the other 24 18 12
pieces of glass in the testing (92nd) cassette are

measured. Therefore, the process data of these 25 3
pieces of glass in the testing cassette are used for U

VM conjecturing, whereas the corresponding

actual metrology values of these 25 pieces of |16 14
testing glass are adopted to evaluate the VM 5

COIlj ecture accuracy.

Example 2A includes 121 sets of process data
and their corresponding metrology data. The first
102 sets are adopted as the modeling sets for
establishing the NN conjecture and MR
predictive models. The last 19 sets of process data are used for the
VM conjecturing test, whereas the corresponding actual metrology
values of those 19 sets are adopted for evaluating the VM
conjecture accuracy.

Example 2B involves Example 2A’s 121 sets and 12 additional
sets of process and metrology data. Those 121 sets are adopted as
the data for establishing the NN conjecture and MR predictive
models. The additional 12 sets are applied for the VM conjecturing
test. Especially, among those additional 12 sets, #3 ~ #9 are chosen
to perform a critical dimension (CD) spread test with the
adjustment of a major parameter on the photo equipment.

According to the physical properties of the CVD equipment and
photo equipment, 10 and 21 key process parameters are chosen
respectively as the inputs of the conjecture model. The conjecture
accuracy calculated from the test data was quantified by the mean
absolute percentage error (MAPE) [11], [15]. Its formula is
represented as follows.

M=

‘()A}[_yi)/y‘
x100%

MAPE =

(12)
q

where )A/l. is the VM conjecture value, y;is the actual metrology

value, y is the target value, and ¢ is the conjecture sample size. The
closer the MAPE value is to zero, the better the conjecture accuracy
of the model can achieve.

Besides the MAPE, this paper also proposes an accuracy index
(AI), lying between 0 and 1, to make the accuracy evaluation more
distinct. The Al formula of a test set for various algorithms is
represented as follow. Each test set contains many samples.

M APE gi1gorithm M APE Beyt
MAPEW op5t-MAPE Begy

Al= (13)

where MAPE ;i represents the MAPE of solo-NN, solo-MR,
SS-scheme, or WS-scheme algorithm of the test set; MAPEg,, is
the MAPE value by selecting the smaller-error VM output of each
NN-and-MR-output pair of all samples in the test set; and
MAPEy,,; is the MAPE value by selecting the larger-error VM
output of each NN-and-MR-output pair of all samples in the test
set.

Observing (13), if MAPE yjg0rimm €quals MAPEg,,, then Al
equals 0. On the other hand, if MAPE i €quals MAPE ..,
then Al equals 1. The purpose of adding the selection schemes is to
generate a smaller MAPE value of the test set. Therefore, the Al
value is the smaller the better. However, the Al value may be
smaller than 0 if the selection scheme generates a MAPE value that
is smaller than MAPE,,.

The detailed test results of the two examples mentioned above
are presented below.

10 1
0 ) SHOT 2
5 6.7 8
8 5| 12 1110 9
7 4 SHOT 1
6 3 13 1415 16
(a) (b)

Fig. 4 Measurement Positions of (a) CVD Equipment (19”-product Glass)

(b) Photo Equipment (14.1”-product Glass).
3.1 Conjecture Results of Example 1

Among all the 19 measurement positions for the CVD process
of 19”-product glass, the VM conjecture results of Positions 6 and
14 for various algorithms are illustrated in Fig. 5. The various Als
(0.57, 0.43, 0.41, and 0.35 for solo-NN, solo-MR, SS-scheme, and
WS-scheme, respectively) shown in Fig. 5(a) indicate that the
SS-scheme is better than the solo-NN and solo-MR as far as the
VM conjecture accuracy is concerned. Moreover, the accuracy of
the WS-scheme is superior to that of the SS-scheme. However, as
shown in Fig. 5(b), the Als of the solo-NN, solo-MR, and
SS-scheme are all 0.50. This fact indicates that the SS-scheme
cannot improve the accuracy of Position 14. Nevertheless, the
accuracy is improved by applying the WS-scheme with Al = 0.42.

Table I presents the conjecture accuracy of the solo-NN,
solo-MR, SS-scheme, and WS-scheme algorithms for all the (19)
measurement positions of Example 1. As indicated in Table I, the
accuracy of Positions 5, 13, and 14 of the solo-NN is better than
that of the solo-MR. On the contrary, the solo-MR’s accuracy of all
the other positions is superior to the solo-NN’s accuracy. That is
one of the reasons why we try to develop the SS-scheme and
WS-scheme to improve the overall accuracy. Observing the last
row of Table 1, the means of MAPE and Al of the WS-scheme are
the best among all the solo-NN, solo-MR, SS-scheme, and
WS-scheme algorithms. And, the mean of Al of the SS-scheme is
worse than that of the solo-MR in this example. Moreover, among
those 19 positions, there are six positions (2, 4, 13, 15, 16, & 18)
whose Al values of the SS-scheme are larger than 0.5 while only
one position (11) whose Al value of the WS-scheme is larger than
0.5. Therefore, the WS-scheme is indeed better than the
SS-scheme.

3.2 Conjecture Results of Example 24

The glass of 14.1” product for the photo process has two shots.
Each shot has 8 measurement positions. This example utilizes the
eight positions of Shot 2, as shown in Fig. 4(b), for evaluation.
Table II presents the VM conjecture accuracy of various algorithms
for all the measurement positions (1-8). Among those 8 positions,
the conjecture results of Positions 3 and 4 for various algorithms
are depicted in Fig. 6. After examining Fig. 6 and Table II, we
discover that the same conclusions made in Example 1 are still
valid in Example 2A. The conclusions are accuracy improvement
of the WS-scheme is assured because none of the Al values are
greater than 0.5; and, that of the SS-scheme is not certain since the
Al values of Positions 1, 2, 5, and 8 are greater than 0.5.

The experimental data of both Examples 1 and 2A are collected
from normal CVD and photo manufacturing processes. To test the
capability of the WS-scheme for improving the accuracy under
process drift and/or shift conditions, Example 2B is presented as
follows.
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Fig. 5. VM Conjecture Results of Various Algorithms for Example 1 (a) Position 6 (b) Position 14.
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Fig. 6. VM Conjecture Results of Various Algorithms for Example 2A (a) Position 3 (b) Position 4.
TABLE I
VM CONJECTURE ACCURACY OF VARIOUS ALGORITHMS FOR EXAMPLE 1 (All Positions)
Accuracy
Pos. MAPE (%) Al
NN MR SS-scheme | WS-scheme Best Worst NN MR SS-scheme | WS-scheme Best | Worst
1 1.13 0.72 0.86 0.83 0.57 1.28 0.78 0.22 0.41 0.38 0 1
2 1.03 1.01 1.10 0.97 0.66 1.39 0.51 0.49 0.61 0.43 0 1
3 1.22 1.17 1.10 1.17 0.59 1.81 0.52 0.48 0.42 0.47 0 1
4 1.03 0.84 1.02 0.90 0.62 1.26 0.65 0.35 0.63 0.43 0 1
5 1.10 1.19 1.13 0.99 0.73 1.55 0.45 0.55 0.49 0.32 0 1
6 1.00 0.92 0.90 0.87 0.66 1.25 0.57 0.43 0.41 0.35 0 1
7 1.39 1.04 1.14 1.11 0.76 1.68 0.69 0.31 0.42 0.38 0 1
8 1.45 1.39 1.36 1.32 1.10 1.74 0.55 0.45 0.41 0.35 0 1
9 1.05 091 0.94 091 0.59 1.37 0.59 0.41 0.44 0.42 0 1
10 1.23 0.88 1.00 0.93 0.60 1.51 0.69 0.31 0.44 0.36 0 1
11 1.19 1.17 1.10 1.19 0.79 1.57 0.51 0.49 0.39 0.51 0 1
12 1.29 1.23 1.09 1.26 0.90 1.62 0.54 0.46 0.26 0.50 0 1
13 1.42 1.44 1.43 1.39 1.04 1.82 0.49 0.51 0.51 0.45 0 1
14 1.23 1.24 1.24 1.18 0.84 1.63 0.50 0.50 0.50 0.42 0 1
15 1.13 1.05 1.19 1.02 0.76 1.43 0.56 0.44 0.64 0.40 0 1
16 1.27 0.92 1.14 0.97 0.73 1.47 0.74 0.26 0.56 0.33 0 1
17 1.49 1.49 1.44 1.43 0.96 2.01 0.50 0.50 0.46 0.44 0 1
18 1.43 1.32 1.46 1.31 0.95 1.81 0.56 0.44 0.59 0.42 0 1
19 1.25 1.13 0.92 1.10 0.79 1.60 0.58 0.42 0.17 0.39 0 1
Mean 1.23 1.11 1.13 1.10 0.77 1.58 0.57 0.42 0.44 0.41 0 1
TABLE II
VM CONJECTURE ACCURACY OF VARIOUS ALGORITHMS FOR EXAMPLE 2A (All Positions)
Accuracy
Pos. MAPE (%) Al
NN MR SS-scheme | WS-scheme Best Worst NN MR SS-scheme | WS-scheme Best Worst
1 0.84 0.72 0.79 0.76 0.62 0.94 0.69 0.31 0.54 0.44 0 1
2 0.90 0.67 0.82 0.79 0.60 0.98 0.80 0.20 0.58 0.50 0 1
3 0.81 0.73 0.73 0.70 0.57 0.96 0.60 0.40 0.42 0.32 0 1
4 0.76 0.88 0.74 0.69 0.60 1.05 0.36 0.64 0.32 0.19 0 1
5 0.78 0.66 0.74 0.71 0.59 0.86 0.72 0.28 0.55 0.44 0 1
6 1.32 1.34 1.31 1.31 0.99 1.66 0.48 0.52 0.47 0.47 0 1
7 0.85 1.08 0.92 0.92 0.73 1.19 0.24 0.76 0.39 0.40 0 1
8 0.90 0.93 0.95 0.85 0.64 1.20 0.47 0.53 0.55 0.37 0 1
Mean 0.89 0.88 0.87 0.84 0.67 1.10 0.52 0.48 0.47 0.39 0 1
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3.3 Conjecture Results of Example 2B

As explained in the beginning of Section 3, among those 12 test
sets, #3 ~ #9 were chosen to perform a critical dimension (CD)
spread test with the adjustment of a major parameter on the photo
equipment. Table III illustrates the VM conjecture results of various
algorithms for Example 2B. In particular, the conjecture

17.5

results of Positions 4 and 8 are depicted in Fig. 7(a) and 7(b),
respectively. Observing Fig. 7 and Table III, again the conclusions
drew in Examples 1 and 2A are still effective for Example 2B.
Furthermore, the Al values of the WS-scheme at Positions 5 and 8
are negative, which means the MAPE of the VM conjecture results
generated by the WS-scheme is smaller than the MAPE g,
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Fig. 7. VM Conjecture Results of Various Algorithms for Example 2B (a) Position 4 (b) Position 8.
TABLE II1
VM CONJECTURE ACCURACY OF VARIOUS ALGORITHMS FOR EXAMPLE 2A (All Positions)
Accuracy
Pos. MAPE (%) Al
NN MR SS-scheme | WS-scheme Best Worst NN MR SS-scheme | WS-scheme Best |Worst|
1 1.25 0.58 0.67 0.54 0.51 1.31 0.92 0.08 0.19 0.03 0 1
2 1.46 0.52 0.52 0.82 0.44 1.54 0.93 0.07 0.07 0.34 0 1
3 1.39 1.04 1.04 1.15 0.81 1.63 0.71 0.29 0.29 0.42 0 1
4 1.04 0.72 0.72 0.60 0.54 1.22 0.74 0.26 0.26 0.09 0 1
5 1.09 1.51 1.09 0.48 0.94 1.67 0.21 0.79 0.21 -0.63° 0 1
6 1.03 0.61 0.70 0.52 0.34 1.31 0.72 0.28 0.37 0.19 0 1
7 0.90 0.56 0.90 0.58 0.42 1.04 0.78 0.22 0.78 0.26 0 1
8 1.19 2.92 1.19 0.92 0.96 3.15 0.11 0.89 0.11 -0.02° 0 1
Mean 1.17 1.06 0.85 0.70 0.62 1.61 0.56 0.44 0.24 0.08 0 1

* Negative Al values indicate that the MAPE of the VM conjecture results is smaller than the MAPE g,

V.

The SS-scheme that may choose the more accurate output
between the dual NN and MR results for enhancing VM conjecture
accuracy was proposed in CASE 2008. To further improve the
accuracy, the WS-scheme, which computes the VM output with a
weighted sum of NN and MR results, is developed in this paper.
The CVD and photo processes of fifth generation TFT-LCD
manufacturing are adopted as the illustrated examples to compare
the VM conjecture accuracy among the solo-NN, solo-MR,
SS-scheme, and WS-scheme algorithms. Test results show that the
WS-scheme is the best among various algorithms for both CVD
and photo processes and with normal as well as drift/shift
manufacturing processes.
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