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摘要 

本次出國之目的為參加98年8月22日至25日在於印度班加羅爾市(Bangalore, India)

舉行之2009 年IEEE自動化科學與工程國際研討會(2009 IEEE International Conference 

on Automation Science and Engineering, CASE 2009)，並發表學術研究論文。本次CASE 

2009國際研討會共有214篇論文投稿，審查結果僅118篇論文獲接受於本次大會發表，接

受率僅約55%。本次大會於98年8月22日於印度科學院(Indian Institute of Science)舉行4場

Workshops與4場Tutorials，本人也報名參加了Tutorial: Sensor Networks for Automation 

Applications及Workshop: Service Science and Automation，學習不少相關技術與知識。本

次大會共舉辦了三場全體出席的大會演講(Plenary Talks)，分別由兩位知名學者:美國康

乃狄克大學的Peter Luh教授與美國華盛頓大學Karl Bohringer教授，以及知名軟體公司

Infosys Technologies的執行長S. Gopalakrishnan先生擔任講座。本次大會也利用98年8月

23日至25日3天時間，分5個平行場次(Parallel Tracks)，共有25場次(Sessions)-包含9個特

別場次(Special Sections)，將所有論文利用口頭方式公開發表。本人在本次會議發表論文

乙篇「雙重虛擬量測輸出選擇機制之進階研究(Advanced Studies of Selection Schemes for 

Dual Virtual-Metrology Outputs)」，被安排於98年8月24日下午4點半導體良率症狀辨識

自動化(Automation for Yield Symptom Identification in Semiconductor Manufacturing)特別

場次報告。
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一、目的 

本次出國之目的為參加98年8月22日至25日在於印度班加羅爾市(Bangalore, India)

舉行之2009 年IEEE自動化科學與工程國際研討會(2009 IEEE International Conference 

on Automation Science and Engineering, CASE 2009)，並發表學術論文乙篇，經費來源為

行政院國家科學委員會補助國內專家學者出席國際學術會議經費。 

二、過程 

本次2009年IEEE自動化科學與工程國際研討會(CASE 2009)於98年8月22日至25日

在印度班加羅爾市(Bangalore, India)舉行。本次會議共有214篇論文投稿，審查結果僅118

篇論文獲接受於本次大會發表，接受率僅約55%。 

本次大會於98年8月22日於印度科學院 (Indian Institute of Science)舉行4場

Workshops與4場Tutorials，本人也報名參加了Tutorial: Sensor Networks for Automation 

Applications及Workshop: Service Science and Automation，學習不少相關技術與知識。本

次大會共舉辦了三場全體出席的大會演講(Plenary Talks)，分別由兩位知名學者:美國康

乃狄克大學的Peter Luh教授與美國華盛頓大學Karl Bohringer教授，以及知名軟體公司

Infosys Technologies的執行長S. Gopalakrishnan先生擔任講座。 

本次大會也利用98年8月23日至25日3天時間，分5個平行場次(Parallel Tracks)，共

有25場次(Sessions)-包含9個特別場次(Special Sections)，將所有論文利用口頭方式公開

發表。本人在本次會議發表論文乙篇「雙重虛擬量測輸出選擇機制之進階研究(Advanced 

Studies of Selection Schemes for Dual Virtual-Metrology Outputs)」，被安排於98年8月24
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日下午4點半導體良率症狀辨識自動化(Automation for Yield Symptom Identification in 

Semiconductor Manufacturing)特別場次報告，論文資料如下： 

(中文題目：雙重虛擬量測輸出選擇機制之進階研究) 

Wei-Ming Wu, Fan-Tien Cheng, Tung-Ho Lin, Deng-Lin Zeng, Jyun-Fang Chen, and 

Min-Hsiung Hung, “Advanced Studies of Selection Schemes for Dual 

Virtual-Metrology Outputs,” in Proceedings of 2009 IEEE International Conference on 

Automation Science and Engineering (CASE 2009), Bangalore, India, pp. 421-426, 

August 22-25, 2009. 

三、心得 

本次大會之特色除了 3 場邀請之專題演講(Invited Plenary Talks)及 4 場 Workshops

與 4 場 Tutorials 外，也舉辦參觀印度軟體公司的參訪活動，讓參與者可以看到印度軟

體發展的進步情形。本次國際學術會議，國內共有 6 位的專家學者參加。整體而言，本

次大會相當成功。本次研討會從研討會訊息、論文投稿、論文審稿、論文審查意見通知、

論文定稿、到研討會註冊報名等均可由 CASE 2009網站作業完成，資訊非常透明與便捷，

此點值得國內辦理研討會時參考。 

四、建議事項 

最後，感謝國科會提供經費補助國內專家學者出席國際研討會，也期盼國內學者能

繼續積極參與國際學術活動並發表論文，以期提升我國之國際學術地位。 

五、攜回資料名稱及內容 

1. Proceedings CD of 2009 IEEE International Conference on Automation Science and 

Engineering. 
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附錄：「雙重虛擬量測輸出選擇機制之進階研究(Advanced Studies 
of Selection Schemes for Dual Virtual-Metrology Outputs)」

論文內容 



Advanced Studies of Selection Schemes for  
Dual Virtual-Metrology Outputs 

Wei-Ming Wu, Student Member, IEEE, Fan-Tien Cheng, Fellow, IEEE, Tung-Ho Lin, Member, IEEE, 
Deng-Lin Zeng, Jyun-Fang Chen, and Min-Hsiung Hung, Senior Member, IEEE 

 A

                                                

bstract -- Advanced Studies of selection schemes between 
neural-network (NN) and multiple-regression (MR) outputs of 
a virtual metrology system (VMS) are presented in this paper. 
Both NN and MR are applicable algorithms for implementing 
VM conjecture models. But a MR algorithm may achieve better 
accuracy only with a stable process, whereas a NN algorithm 
may has superior accuracy when equipment property drift or 
shift occurs. To take advantage of the merits of both MR and 
NN algorithms, the simple-selection scheme (SS-scheme) was 
proposed in CASE 2008 to enhance virtual-metrology (VM) 
conjecture accuracy. This SS-scheme simply selects either NN 
or MR output. Recently, with advanced studies, a 
weighted-selection scheme (WS-scheme), which computes the 
VM output with a weighted sum of NN and MR results, has 
been developed. Besides the example with the CVD process of 
fifth generation TFT-LCD used in the CASE 2008 paper, a new 
example with the photo process is also adopted in this paper to 
test and compare the conjecture accuracy among solo NN, solo 
MR, SS-scheme, and WS-scheme. One-hidden-layered 
back-propagation neural network (BPNN-I) is adopted for 
establishing the NN conjecture model. Test results show that the 
conjecture accuracy of the WS-scheme is the best among those 
of solo NN, solo MR, SS-scheme, and WS-scheme algorithms. 

Index Terms – Virtual metrology (VM), dual-VM outputs, 
simple selection scheme (SS-scheme), weighted selection scheme 
(WS-scheme). 

I. INTRODUCTION 

As the size of electronic devices shrink gradually, 
wafer-to-wafer (W2W) control has become more essential for 
critical stages in improving semiconductor manufacturing yield rate 
[1], [2]. To achieve the requirement of W2W control, the metrology 
values of each wafer needs to be obtained. However, it is very 
expensive and time-consuming to acquire the metrology values of 
each wafer by actual measurement. A feasible solution is to apply 
virtual metrology (VM) technology, which can conjecture the 
processing quality of each wafer according to the process data of a 
production tool without physically conducting actual measurement 
[2]-[4].  

Khan et al. published twin papers in November 2007 [5] and 
2008 [6] to develop a distributed VM architecture for fab-wide VM 
and feedback control of semiconductor manufacturing processes 

 
The author would like to thank the National Science Council of R.O.C for 
financially supporting this research under contract Nos: NSC96-2622 
-E-006-043 & NSC98-2622-E-006-009. This work was also supported by 
the Landmark Project of National Cheng Kung University, Taiwan. 
Wei-Ming Wu, Fan-Tien Cheng (the corresponding author), Deng-Lin Zeng, 
and Jyun-Fang Chen are with the Institute of Manufacturing Engineering, 
National Cheng Kung University, Tainan 70101, Taiwan, R.O.C. (e-mail: 
min@super.ime.ncku.edu.tw; chengft@mail.ncku.edu.tw; 
delen@super.ime.ncku.edu.tw; yaya@super.ime.ncku.edu.tw), Tung-Ho Lin 
is with the Chung Shan Institute of Science and Technology, Taoyuan 32505, 
Taiwan, R.O.C. (e-mail: ldh6211@gmail.com), Min-Hsiung Hung is with 
the Department of Electrical and Electronic Engineering, National Defence 
University, Taoyuan 33509, Taiwan, R.O.C. (e-mail: mhhung@ndu.edu.tw). 

using recursive partial least squares (PLS). Both [5] and [6] stated 
that the VM conjecture accuracy will affect the controlled process 
outputs. Besides, Wu et al. [7] studied the performance of 
run-to-run (R2R) control subject to metrology delay and concluded 
that applying VM to remedy the metrology-delay problem is 
justified if the error of the VM method is less than the error caused 
by stochastic process noise. In other words, with accurate and 
prompt VM outputs, W2W control can be economically achieved in 
current semiconductor manufacturing processes. Therefore, to 
implement VM for supporting R2R/W2W control, high conjecture 
accuracy is the key issue. 

To achieve high VM conjecture accuracy, adopting 
feature/variable selection methods to filter out noise of process data 
are possible approaches. Ko et al. [8] proposed the so-called 
autokey method to choose key parameters of VM from the 
manufacturing data via a hierarchical clustering approach and 
according to their correlation coefficients. Also, Lin et al. [9] 
developed a NN-based key-variable selection method for enhancing 
VM accuracy. On the other hands, this paper proposes selection 
schemes of dual VM outputs to improve VM conjecture accuracy. 

As VM is practically applied, no actual metrology value can be 
used to evaluate conjecture accuracy. Thus, the VM conjecture 
value needs an accompanying reliance index (RI) to evaluate its 
reliance level [11]. The RI is defined as the overlapping-area value 
between the standardized statistical distribution of the 
neural-network (NN) conjecture value and the multiple-regression 
(MR) predictive value [10], [11]. In other words, if a VMS 
possesses the RI scheme, then this VMS should have both the NN 
and MR VM results; while NN conjecture value is assigned as the 
default VM output and MR predictive value is considered as the 
reference output [10], [11]. However, as compared in [12] and [13], 
the MR algorithm may achieve superior accuracy with a stable 
process (such as low-level data variance), whereas the NN 
algorithm may have better accuracy when high-level data variance 
(e.g. process tool property drift or shift) occurs. To take advantage 
of the merits of both MR and NN algorithms, the simple-selection 
scheme (SS-scheme) was first proposed to enhance VM conjecture 
accuracy [14]. This SS-scheme simply selects either NN or MR 
output. Recently, to further improve the accuracy and with 
advanced studies, a weighted-selection scheme (WS-scheme), 
which computes the VM output with a weighted sum of NN and 
MR results, is presented.  

One-hidden-layered back-propagation neural network (BPNN-I) 
is adopted as the algorithm for establishing the NN conjecture 
models. The CVD and photo processes in a fifth generation 
TFT-LCD factory are adopted as illustrated examples to test and 
compare the conjecture accuracy among solo-NN, solo-MR, 
SS-scheme, and WS-scheme. Test results show that the conjecture 
accuracy of the WS-scheme is the best among those solo-NN, 
solo-MR, SS-scheme, and WS-scheme algorithms. 

The remainder of this paper is organized as follows. Section 2 
details the SS-scheme and WS-scheme between NN and MR 
outputs. Section 3 then presents and compares the experimental 
results among solo-NN, solo-MR, SS-scheme and WS-scheme. The 
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implications of experimental results are also discussed here. Finally, 
a summary and conclusion are made in Section 4. 

II. SS-SCHEME AND WS-SCHEME 

 Both the proposed SS-scheme and WS-scheme are all 
composed of an off-line classification flow of modeling data sets 
(as shown in Fig. 1). Then, the on-line selection flows of 
SS-scheme and WS-scheme are depicted in Figs. 2 and 3, 
respectively. They are described below. 

2.1 Off-line Classification Flow of Modeling Data Sets 

The entire modeling data sets are first classified into the NN 
group and the MR group based on the modeling error of each data 
set. The procedure shown in Fig. 1 is detailed as follows. 

●Step 1) To create the NN and MR models, n sets of historical data 
are collected, including process data (xa,j, a = 1, 2, …, n;  j = 1, 
2, …, p) from a production tool and the corresponding metrology 
data (ya, a = 1, 2, …, n) from a metrology tool, where each set of 
process data contains individual parameters (from parameter 1 to 
parameter p). The correlation between the process and metrology 
data of each set should be assured before considering this set as a 
valid modeling set. 

●Step 2) Before the NN conjecture model and MR predictive 
model are established, the process and metrology data have to be 
standardized by Z-score. The equations for standardizing the 
process and metrology data are listed as follows [11]. 
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where 

,a jx  jth process parameter in the ath set of process data; 

,a jxZ  standardized jth process parameter in the ath set of 
process data; 

jx  mean of the jth process data;  

jxσ  standard deviation of the jth process data; 

ay  ath actual metrology value; 

ayZ  standardized ath actual metrology value; 
y  mean of all the actual metrology values; 

yσ  standard deviation of all the actual metrology values. 

●Step 3) The n sets of standardized process data (
,a jxZ ,  a = 1, 

2, …, n;  j=1, 2, …, p) and the standardized actual metrology values 
(

ayZ ,  a = 1, 2, …, n)  are adopted to create the NN conjecture 

model and MR predictive model. 

●Step 4) Compute the NN and MR modeling errors of each sample. 
The NN and MR modeling errors of each sample are depicted as 
follows. 

ˆ|
a aN a Ny y |ε = − , a = 1, 2, …, n                   (7)            

ˆ|
a ar a ry y |ε = − , a = 1, 2, …, n                   (8)            

where
aNε and 

ar
ε represent the NN modeling error and MR 

modeling error for the ath sample, respectively; ya is the actual 
metrology value; ˆNa

y  and ˆ
ar

y  are the NN and MR VM values, 

respectively. 

●Step 5) Check whether 
aNε  is less than or equal to 

ar
ε  for 

each sample. 

●Step 6) If 
aNε  is less than or equal to 

ar
ε , then this modeling 

sample is distributed to the NN group. Otherwise, 

this modeling sample is distributed to the MR group. 

●Step 7) Assume that s and t sets of modeling sample data are 
contained in the NN group and MR group, respectively. Thus, the s 
and t sets of standardized model parameters are defined as 

,1 ,2 ,,  ,  ...,  N N N N p

T
Z Z Z= ⎡ ⎤⎣ ⎦Z

,1 ,2 ,,  ,  ...,  r r r r p

T
Z Z Z=

(for NN group) and 

⎡ ⎤⎣ ⎦Z  (for MR group). Here, ,N jZ  and ,r jZ  

are the means of the standardized jth process parameters in the NN 
group and MR group, respectively. 

2.2 On-line Selection Flow of the SS-scheme  

Figure 2 shows the on-line selection flow between the NN and 
MR outputs for each conjecture sample (denoted the SS-scheme). 
The Mahalanobis distance (MD) between the conjecture sample 
and standardized model parameters of NN or MR group is first 
calculated. Then, the NN or MR output is chosen depending on 
which computed MD is smaller. The flow of the SS-scheme shown 
in Fig. 2 is detailed as follows. 

●Step 1) Collect the newly (λth) input set of process data 

,1 ,2 ,,  ,  ...,  p

T
x x xλ λ λ λ= ⎡ ⎤⎣ ⎦X  as the conjecture sample. 

●Step 2) Compute the standardized λth set process data 

,1 ,2 ,
( ,  ,  ...,  )

P

T

x x xZ Z Zλ λ λ λ
⎡ ⎤= ⎣ ⎦Z . 

●Step 3) Calculate the Mahalanobis distance between 
λZ and , 

and between 
NZ

λZ  and  as follows [11]. 
rZ

( ) ( )T2 1

N, N NND =λ λ λ

−−Z Z R Z Z−                     ( 9 ) 

( ) ( ),λ λ λ

2 1

r r rD = −−Z Z R Z ZT

r−                    (10) 

where 2

N,D λ  represents the MD between 
λZ  and , 

NZ 2

r,D λ  

depicts the MD between 
λZ  and , 

rZ 1

NR − and 1

rR − are the 
inverse matrixes of correlation coefficients among the standardized 
parameters in the NN group and MR group. 
●Step 4) Check whether 2

N,D λ  is less than or equal to 2

r,D λ . 
●Step 5) If Step 4 is yes, then the NN output is selected, otherwise 
the MR output is chosen. 
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2.3 On-line Selection and Computing Flow of the WS-Scheme 

Figure 3 depicts the on-line selection flow with computing the 
weighted conjecture value for each conjecture sample (denoted the 
WS-scheme). The SS-scheme simply selects the VM conjecture 
output from either NN or MR result therefore the effect of 
accuracy-enhancement may be too extreme. To remedy this 

problem for further improving the VM conjecture accuracy, the 
WS-scheme is adopted by considering the weighted sum of NN and 
MR outputs. The selection and computing flow of the WS-scheme 
shown in Fig. 3 is detailed as follows. 

NZ rZ

Fig. 1. Off-line Classification Flow of Modeling Data Sets 

●Steps 1) ~ 3) are the same as those of the SS-scheme. 
●Step 4)  Calculate the weighted conjecture value ( ˆ

aWy ) as 

follows. 

ˆ ˆ
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a

 and  are the NN and MR VM outputs, 

respectively.  
ˆNy ˆ
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y

As shown in (11), the weighting of the NN component is 
determined by the ratio between 2

r,D λ
 and the sum of 2

N,D λ
+ 2

r,D λ
. 

On the contrary, the weighting of the MR component is calculated 
by the ratio between 2

N,D λ
 and the sum of 2

N,D λ
+ 2

r,D λ
. 
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2
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ˆ
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Fig. 3 On-line Selection and Computing 

Flow of the WS-Scheme 

4. 2 2
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Fig. 2. On-line Selection Flow of the SS-scheme 

III. ILLUSTRATIVE EXAMPLES 

Two examples are applied to be tested and compared. All the 
experimental data were collected from a CVD tool (for Example 1) 
and a photo tool (for Examples 2A and 2B). These CVD and photo 
tools are practically operating in a fifth generation TFT-LCD 
factory in Taiwan. In Example 1, to assure the quality of glass, 19 
positions (shown in Fig. 4(a)) are measured on 19”-product glass 
for a single shoot CVD operation. In Examples 2A and 2B, 
14.1”-product glass is divided into two shots for photo processing. 
Each shot has 8 measurement positions, as depicted in Fig. 4(b). 
Shot 2 is selected for Example 2. 

Example 1 involves 92 sets of virtual cassettes and each virtual 
cassette may contain up to 100 pieces of glass. The last glass in a 
cassette is selected as the sample one, whose thickness value is 
measured to monitor the quality of the whole cassette. Thus, those 
process data (Xi, i = 1, 2, …, 91) of the first 91 pieces of sampling 
glass and their corresponding actual metrology values (yi, i = 1, 
2, …, 91) are adopted for establishing the NN conjecture and MR 
predictive models. 
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The 92nd virtual cassette that contains 25 
pieces of glass is used for the VM conjecturing 
test. For evaluating the conjecture accuracy, not 
only the regular sampling glass but the other 24 
pieces of glass in the testing (92nd) cassette are 
measured. Therefore, the process data of these 25 
pieces of glass in the testing cassette are used for 
VM conjecturing, whereas the corresponding 
actual metrology values of these 25 pieces of 
testing glass are adopted to evaluate the VM 
conjecture accuracy.   

Example 2A includes 121 sets of process data 
and their corresponding metrology data. The first 
102 sets are adopted as the modeling sets for 
establishing the NN conjecture and MR 
predictive models. The last 19 sets of process data are used for the 
VM conjecturing test, whereas the corresponding actual metrology 
values of those 19 sets are adopted for evaluating the VM 
conjecture accuracy. 

Example 2B involves Example 2A’s 121 sets and 12 additional 
sets of process and metrology data. Those 121 sets are adopted as 
the data for establishing the NN conjecture and MR predictive 
models. The additional 12 sets are applied for the VM conjecturing 
test. Especially, among those additional 12 sets, #3 ~ #9 are chosen 
to perform a critical dimension (CD) spread test with the 
adjustment of a major parameter on the photo equipment. 

According to the physical properties of the CVD equipment and 
photo equipment, 10 and 21 key process parameters are chosen 
respectively as the inputs of the conjecture model. The conjecture 
accuracy calculated from the test data was quantified by the mean 
absolute percentage error (MAPE) [11], [15]. Its formula is 
represented as follows. 

3.1  Conjecture Results of Example 1  

Among all the 19 measurement positions for the CVD process 
of 19”-product glass, the VM conjecture results of Positions 6 and 
14 for various algorithms are illustrated in Fig. 5. The various AIs 
(0.57, 0.43, 0.41, and 0.35 for solo-NN, solo-MR, SS-scheme, and 
WS-scheme, respectively) shown in Fig. 5(a) indicate that the 
SS-scheme is better than the solo-NN and solo-MR as far as the 
VM conjecture accuracy is concerned. Moreover, the accuracy of 
the WS-scheme is superior to that of the SS-scheme. However, as 
shown in Fig. 5(b), the AIs of the solo-NN, solo-MR, and 
SS-scheme are all 0.50. This fact indicates that the SS-scheme 
cannot improve the accuracy of Position 14. Nevertheless, the 
accuracy is improved by applying the WS-scheme with AI = 0.42.   

Table I presents the conjecture accuracy of the solo-NN, 
solo-MR, SS-scheme, and WS-scheme algorithms for all the (19) 
measurement positions of Example 1. As indicated in Table I, the 
accuracy of Positions 5, 13, and 14 of the solo-NN is better than 
that of the solo-MR. On the contrary, the solo-MR’s accuracy of all 
the other positions is superior to the solo-NN’s accuracy. That is 
one of the reasons why we try to develop the SS-scheme and 
WS-scheme to improve the overall accuracy. Observing the last 
row of Table 1, the means of MAPE and AI of the WS-scheme are 
the best among all the solo-NN, solo-MR, SS-scheme, and 
WS-scheme algorithms. And, the mean of AI of the SS-scheme is 
worse than that of the solo-MR in this example. Moreover, among 
those 19 positions, there are six positions (2, 4, 13, 15, 16, & 18)  
whose AI values of the SS-scheme are larger than 0.5 while only 
one position (11) whose AI value of the WS-scheme is larger than 
0.5. Therefore, the WS-scheme is indeed better than the 
SS-scheme. 
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(a)                             (b) 
Fig. 4 Measurement Positions of (a) CVD Equipment (19”-product Glass)  

(b) Photo Equipment (14.1”-product Glass). 
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where  is the VM conjecture value, yi is the actual metrology 
value, y is the target value, and q is the conjecture sample size. The 
closer the MAPE value is to zero, the better the conjecture accuracy 
of the model can achieve.  

ˆiy

Besides the MAPE, this paper also proposes an accuracy index 
(AI), lying between 0 and 1, to make the accuracy evaluation more 
distinct. The AI formula of a test set for various algorithms is 
represented as follow. Each test set contains many samples. 

M A P E - M A P El g
M A P E - M A P E

A I = A o r i t h m B e s t
W o r s t B e s t

          (13) 3.2 Conjecture Results of Example 2A 

The glass of 14.1” product for the photo process has two shots. 
Each shot has 8 measurement positions. This example utilizes the 
eight positions of Shot 2, as shown in Fig. 4(b), for evaluation. 
Table II presents the VM conjecture accuracy of various algorithms 
for all the measurement positions (1-8). Among those 8 positions, 
the conjecture results of Positions 3 and 4 for various algorithms 
are depicted in Fig. 6. After examining Fig. 6 and Table II, we 
discover that the same conclusions made in Example 1 are still 
valid in Example 2A. The conclusions are accuracy improvement 
of the WS-scheme is assured because none of the AI values are 
greater than 0.5; and, that of the SS-scheme is not certain since the 
AI values of Positions 1, 2, 5, and 8 are greater than 0.5.  

The experimental data of both Examples 1 and 2A are collected 
from normal CVD and photo manufacturing processes. To test the 
capability of the WS-scheme for improving the accuracy under 
process drift and/or shift conditions, Example 2B is presented as 
follows. 

where MAPEAlgorithm represents the MAPE of solo-NN, solo-MR, 
SS-scheme, or WS-scheme algorithm of the test set; MAPEBest is 
the MAPE value by selecting the smaller-error VM output of each 
NN-and-MR-output pair of all samples in the test set; and 
MAPEWorst is the MAPE value by selecting the larger-error VM 
output of each NN-and-MR-output pair of all samples in the test 
set. 

Observing (13), if MAPEAlgorithm equals MAPEBest, then AI 
equals 0. On the other hand, if MAPEAlgorithm equals MAPEWorst, 
then AI equals 1. The purpose of adding the selection schemes is to 
generate a smaller MAPE value of the test set. Therefore, the AI 
value is the smaller the better. However, the AI value may be 
smaller than 0 if the selection scheme generates a MAPE value that 
is smaller than MAPEBest. 

The detailed test results of the two examples mentioned above 
are presented below. 
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(a
Fig. 5. VM Conjecture Results of Various Algorithms for Example 1 (a) Position 6 (b) Position 14. 

)           (b) 

 

Target 

 

Target

(a)              (b) 
Fig. 6. VM Conjecture Results of Various Algorithms for Example 2A (a) Position 3 (b) Position 4. 

TABLE I 
VM CONJECTURE ACCURACY OF VARIOUS ALGORITHMS FOR EXAMPLE 1 (All Positions) 

Accuracy 
MAPE (%) AI Pos. 

NN MR SS-scheme WS-scheme Best Worst NN MR SS-scheme WS-scheme Best Worst
1 1.13 0.72 0.86 0.83 0.57 1.28 0.78 0.22 0.41 0.38 0 1 
2 1.03 1.01 1.10 0.97 0.66 1.39 0.51 0.49 0.61 0.43 0 1 
3 1.22 1.17 1.10 1.17 0.59 1.81 0.52 0.48 0.42 0.47 0 1 
4 1.03 0.84 1.02 0.90 0.62 1.26 0.65 0.35 0.63 0.43 0 1 
5 1.10 1.19 1.13 0.99 0.73 1.55 0.45 0.55 0.49 0.32 0 1 
6 1.00 0.92 0.90 0.87 0.66 1.25 0.57 0.43 0.41 0.35 0 1 
7 1.39 1.04 1.14 1.11 0.76 1.68 0.69 0.31 0.42 0.38 0 1 
8 1.45 1.39 1.36 1.32 1.10 1.74 0.55 0.45 0.41 0.35 0 1 
9 1.05 0.91 0.94 0.91 0.59 1.37 0.59 0.41 0.44 0.42 0 1 

10 1.23 0.88 1.00 0.93 0.60 1.51 0.69 0.31 0.44 0.36 0 1 
11 1.19 1.17 1.10 1.19 0.79 1.57 0.51 0.49 0.39 0.51 0 1 
12 1.29 1.23 1.09 1.26 0.90 1.62 0.54 0.46 0.26 0.50 0 1 
13 1.42 1.44 1.43 1.39 1.04 1.82 0.49 0.51 0.51 0.45 0 1 
14 1.23 1.24 1.24 1.18 0.84 1.63 0.50 0.50 0.50 0.42 0 1 
15 1.13 1.05 1.19 1.02 0.76 1.43 0.56 0.44 0.64 0.40 0 1 
16 1.27 0.92 1.14 0.97 0.73 1.47 0.74 0.26 0.56 0.33 0 1 
17 1.49 1.49 1.44 1.43 0.96 2.01 0.50 0.50 0.46 0.44 0 1 
18 1.43 1.32 1.46 1.31 0.95 1.81 0.56 0.44 0.59 0.42 0 1 
19 1.25 1.13 0.92 1.10 0.79 1.60 0.58 0.42 0.17 0.39 0 1 

Mean 1.23 1.11 1.13 1.10 0.77 1.58 0.57 0.42 0.44 0.41 0 1 

TABLE II 
VM CONJECTURE ACCURACY OF VARIOUS ALGORITHMS FOR EXAMPLE 2A (All Positions) 

Accuracy 
MAPE (%) AI Pos. 

NN MR SS-scheme WS-scheme Best Worst NN MR SS-scheme WS-scheme Best Worst
1 0.84 0.72 0.79 0.76 0.62 0.94 0.69 0.31 0.54 0.44 0 1 
2 0.90 0.67 0.82 0.79 0.60 0.98 0.80 0.20 0.58 0.50 0 1 
3 0.81 0.73 0.73 0.70 0.57 0.96 0.60 0.40 0.42 0.32 0 1 
4 0.76 0.88 0.74 0.69 0.60 1.05 0.36 0.64 0.32 0.19 0 1 
5 0.78 0.66 0.74 0.71 0.59 0.86 0.72 0.28 0.55 0.44 0 1 
6 1.32 1.34 1.31 1.31 0.99 1.66 0.48 0.52 0.47 0.47 0 1 
7 0.85 1.08 0.92 0.92 0.73 1.19 0.24 0.76 0.39 0.40 0 1 
8 0.90 0.93 0.95 0.85 0.64 1.20 0.47 0.53 0.55 0.37 0 1 

Mean 0.89 0.88 0.87 0.84 0.67 1.10 0.52 0.48 0.47 0.39 0 1 
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 3.3 Conjecture Results of Example 2B 

As explained in the beginning of Section 3, among those 12 test 
sets, #3 ~ #9 were chosen to perform a critical dimension (CD) 
spread test with the adjustment of a major parameter on the photo 
equipment. Table III illustrates the VM conjecture results of various 
algorithms for Example 2B. In particular, the conjecture  

results of Positions 4 and 8 are depicted in Fig. 7(a) and 7(b), 
respectively. Observing Fig. 7 and Table III, again the conclusions 
drew in Examples 1 and 2A are still effective for Example 2B. 
Furthermore, the AI values of the WS-scheme at Positions 5 and 8 
are negative, which means the MAPE of the VM conjecture results 
generated by the WS-scheme is smaller than the MAPE Best. 

Target 

 

Target 

(a)                      (b) 
Fig. 7. VM Conjecture Results of Various Algorithms for Example 2B (a) Position 4 (b) Position 8. 

TABLE III 
VM CONJECTURE ACCURACY OF VARIOUS ALGORITHMS FOR EXAMPLE 2A (All Positions) 

Accuracy 
MAPE (%) AI Pos. 

NN MR SS-scheme WS-scheme Best Worst NN MR SS-scheme WS-scheme Best Worst
1 1.25 0.58 0.67 0.54 0.51 1.31 0.92 0.08 0.19 0.03 0 1 
2 1.46 0.52 0.52 0.82 0.44 1.54 0.93 0.07 0.07 0.34 0 1 
3 1.39 1.04 1.04 1.15 0.81 1.63 0.71 0.29 0.29 0.42 0 1 
4 1.04 0.72 0.72 0.60 0.54 1.22 0.74 0.26 0.26 0.09 0 1 

-0.63a 5 1.09 1.51 1.09 0.48 0.94 1.67 0.21 0.79 0.21 0 1 
6 1.03 0.61 0.70 0.52 0.34 1.31 0.72 0.28 0.37 0.19 0 1 
7 0.90 0.56 0.90 0.58 0.42 1.04 0.78 0.22 0.78 0.26 0 1 

-0.02a 8 1.19 2.92 1.19 0.92 0.96 3.15 0.11 0.89 0.11 0 1 
Mean 1.17 1.06 0.85 0.70 0.62 1.61 0.56 0.44 0.24 0.08 0 1 

     a Negative AI values indicate that the MAPE of the VM conjecture results is smaller than the MAPE Best. 
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