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Developing a Product Quality Fault Detection Scheme'

Yi-Ting Huangz, Student Member, IEEE, Fan-Tien Cheng, Fellow, IEEE, and
Min-Hsiung Hung, Senior Member, IEEE

Abstract—1In current semiconductor and TFT-LCD factories,
periodic sampling is commonly adopted to monitor the stability
of manufacturing processes and the quality of products (or
workpieces). As for those non-sampled workpieces, their quality
is usually monitored by such as a
fault-detection-and-classification (FDC) server. However, this
method may fail to detect defected products. For example, a
workpiece with all the individual manufacturing process
parameters being in-spec may still result in out-of-spec product
quality. Under this circumstance, unless this certain defected
workpiece is selected for sampling by chance, it cannot be
detected by simply monitoring the manufacturing process
parameters collected from the production equipment. To solve
the abovementioned problem, this research proposes a product
quality fault detection scheme (FDS), which utilizes the
classification and regression tree to implement a model for
identifying the relationship between process parameters and
out-of-spec products. Through this model, each set of normal
manufacturing process parameters can be real-time and on-line
examined to detect failure or defected products.

Index Terms—TFault Detection Scheme, Classification and
Regression Tree, Virtual Metrology.

I. INTRODUCTION

n current semiconductor and TFT-LCD factories,
periodic sampling is commonly adopted to monitor the
stability of manufacturing processes and the quality of
products (or workpieces). As for those non-sampled
workpieces, their quality is usually monitored by such as a
fault-detection-and-classification (FDC) server. However,
this method may fail to detect defected products. For example,
a workpiece with all the individual manufacturing process
parameters being in-spec may still result in out-of-spec
product quality. Under this circumstance, unless this certain
defected workpiece is selected for sampling by chance, it
cannot be detected by simply monitoring the manufacturing
process parameters collected from the production equipment.
A TFT-LCD photolithography process is taken as the
illustrative example. Fig. 1(a) presents the real metrology data
of some selected samples and their control limits (upper
control limit (UCL) = 24, lower-control-limit (LCL) = 21).
As shown in Fig. 1, we can easily observe 13 out-of-spec
(O0S) metrology data, in samples No. 4, 5,6, 7, 8,9, 10, 11,
12, 14, 15, 24 and 70, respectively. However, further
investigations show that all the 24 corresponding process data
of these 13 samples are within the specifications, as shown in
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(b) Selected Process Data Corresponding to the Metrology Data Shown in (a).
Fig. 1 Product Quality OOS Example.

Fig. 1(b), where only Xy, X4, X6, X20 Of those 24 corresponding
process data are displayed.

To resolve the problem mentioned above, this research
proposes a product quality fault detection scheme (FDS),
which utilizes the normal process data collected from
production equipment to perform on-line and real-time
product quality monitoring. When an OOS workpiece is
detected, the proposed scheme will alarm the process
engineers to perform subsequent analysis or measurement of
the failure or defected products.

To implement the FDS, first we need to collect
corresponding sets of historical metrology and process data to
build a fault detection model (FD model). Note that the
collected metrology data must include both in-spec and
out-of-spec ones for building a complete model. Besides, the
collected process and metrology data must be preprocessed to
ensure their data quality for avoiding deterioration in the FD
model.

To on-line and real-time evaluate the quality of the
collected process and metrology data for the FDS, the
automatic data quality evaluation methods proposed by the
authors [1] are adopted in this research.

Many studies related to product and process quality
evaluations have been carried out in the past [2], [3], [4], [5],
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[6], [7]. However, with the fast development of
manufacturing technologies, new inspection techniques are
needed. Taking the semiconductor industry for example, the
semiconductor technology roadmap proposed by the
International SEMATECH [8] shows that the manufacturing
process nowadays is getting more and more complex. There
are more factors that are influential to the quality of products,
and many process parameters are correlated. Given this
situation, the traditional single-variate statistical process
control methods [9] are no longer sufficient for the current
semiconductor industry. Instead, the multivariate statistical
analysis [10] and data mining technology [11] are demanded
for making data-driven decisions. In this way, the causes or
hidden information of process abnormalities can be
effectively discovered based on the professional knowledge
of process engineers and the experience rules.

In view of the current status, a data mining technique called
the “classification and regression tree (CART)” [12], [13] is
adopted by the proposed FDS to construct a model for
identifying the relationship between process parameters and
in-spec or OOS products. As such, the FDS will be able to
on-line and real-time detect failure or defected products. The
FDS is different from the conventional statistical methods
(e.g. one-way plots [14], ANOVA analysis[14], etc.) which
do not efficiently address the problem of confounding effects
from multiple factors. Therefore, the FDS is more applicable
in handling and detecting OOS products resulted from special
process parameter combinations.

The remainder of this paper is organized as follows.
Section 2 explains the mechanism of the proposed product
quality FDS. Section 3 presents an illustrative example of the
photolithography equipment in a TFT-LCD factory in Taiwan.
Section 4 discusses the advantages and disadvantages of FDS
in comparison with the virtual metrology system (VMS) [1],
[15], [16], [17]. and proposes an integrated scheme with
FDS+VMS. Finally, Section 5 provides a summary and
conclusions.

II. PRODUCT QUALITY FAULT DETECTION SCHEME

The complete product quality FDS proposed in this paper
is mainly composed of two models, namely the data quality

end Warning & AsK
for Analysis

Good

A4

DQIx Model

evaluation model and the FD model as shown in Fig. 2. First,
when a set of process data is collected, the DQIx will be
calculated to define whether this process data is abnormal (e.g.
exceeds the control limits) or not. If true, a warning message
requesting further analysis and confirmation will be sent to
the process engineers; otherwise, this process data will be
forwarded to and applied by the FDS to conduct on-line and
real-time monitoring of product qualities. During this
procedure, the FDS will notify the engineers to perform real
measurement when OOS workpieces are detected. On
receiving the real metrology data, the metrology data quality
evaluation module will perform real-time evaluation via DQI,
to identify abnormalities resulted from measurement errors or
other external factors (such as particle pollution). If
abnormalities exist, a warning message will be sent to ask the
engineers to confirm the quality of the metrology data.
Finally, all the normal corresponding data sets will be
forwarded to the FD model to perform re-training and execute
the pruning process. The details of Fig. 2 including data
collection, data quality evaluation (DQIx and DQI, models)
and FD model are explained as follows.
1) Data Collection

This procedure starts with collecting the historical
metrology data. Then, the process data which correspond to
the collected metrology data are searched. If the
corresponding process data are found, the complete set of
process and metrology data will be included; otherwise, the
metrology data with no accompanying process data will be
deleted. The above steps should be executed until the
collected historical data sets are enough for building the FD
model. To establish a complete model for on-line and
real-time FDS, the quality of all the collected process and
metrology data sets must be normal, and the metrology data
must include both in-spec and OOS ones. Also, with more
OOS samples collected for building the FDS model, the
relationship or rules between process parameters and OOS
products can be described more specifically. After all the
required historical metrology data and process data are
collected, data cleaning processes should be performed
manually to screen out the abnormalities of process and
metrology data.

Fault Detection

XG; Model Send Warning & Ask

DQIx Check

for Analysis and
Measurement

RT&P Scheme

Data Preprocessing

end Warning & AsK
for Analysis

A4

DQl, Model

Y6 | Update Model

Fault Detection Scheme

Only for
Re-Training

S=—( v
\ =
v

DQl, Check
Data Preprocessing

Data Quality Evaluation

Fig. 2 Real-time and On-line Product Quality Fault Detection Scheme with Data Quality Evaluation.
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2) Data Quality Evaluation

After collecting enough number of normal historical data
sets, the initial DQIx and DQI,; models can be constructed.
Since the standardized process data generated by the DQIx
model must be utilized to create the first DQI, model, the
DQIx model should be built first [1]. The DQIx and DQI,
models are summarized as follows. Firstly, principal
component analysis (PCA) is applied to analyze all the
collected equipment process data; then Euclidean distance is
utilized to unify all the principal components into a single
index denoted process data quality index (DQIx) for
evaluating the quality of process data. Secondly, adaptive
resonance theory 2 (ART2) and normalized variability (NV)
are applied to define the metrology data quality index (DQI)
for appraising the quality of metrology data. The thresholds
of both DQIx and DQI, are also defined accordingly.

3) Fault Detection Model

The FD model is created after the DQIx and DQI, models,
since the data used for constructing the FD model need to be
checked by DQIx and DQI, first. To begin with, the
metrology data (y) are divided in to 3 quality classes
according to the product quality control limits, i.e. the upper
control limit (UCL) and the lower control limit (LCL). The 3
quality classes are: (1) Class 0: the metrology data (y) is
within the control limits (y > LCL and y <UCL); (2) Class -1:
the metrology data (y) is lower than LCL (y<LCL); and (3)
Class 1: the metrology data (y) exceeds UCL (y>UCL).

Next, the quality classes with the corresponding process
data are utilized by the classification and regression trees
(CART) [12] for constructing the FD model. The FD model
can discover process-data combination rules that are
influential to the quality of products. Also, through the
procedure mentioned above, the process data are classified in
to a tree-like structural detection model.

A CART is a binary decision tree which adopts the GINI
Index (IBM Intelligent Miner) as the branch criteria [12].
Each parent node in a CART can be split into 2 child nodes,
and the data set is partitioned into mutually exclusive
sub-datasets in each split. The more homogeneous the data in
a sub-dataset are, the more samples we can find in a class.

The constructed FD model must be able to carry out
on-line and real-time product quality detection and maintain
90% and above accuracy by avoiding too many false alarms
(FAs) and/or miss detections (MDs). For the semiconductor
and TFT-LCD industries, MDs are much more serious than
FAs. Therefore, a practical FD mechanism should have a low
MD rate. Considering this requirement, a re-training &
pruning scheme (RT&P scheme) is designed in the FD model.
The RT&P scheme adopts the concept of the minimum-cost
for pruning the relatively insignificant rules in a model tree to
avoid model overfitting. In the FD model, the RT&P scheme
mainly functions to prune off leaf nodes with a few samples
to reduce FAs. However, over-pruning of the model tree
might also increase the frequency of MD. Therefore, the
RT&P scheme sets up the cost for each error detection: MD
costs 2, FA costs 1, and correction detection (CD) costs 0.

Next, the RT&P scheme computes the cost of the model trees
using the latest data for modeling and alO-fold
cross-validation [11]. The cost of the model trees are
evaluated through the combination and arrangement to find
the best number of leaf nodes of pruning which has the
minimum-cost. Finally, construct a new FD model by the best
number of leaf nodes. The above are the procedures for
implementing the first FD model. The on-line re-training and
pruning procedures of FD model are presented in the “RT&P
Scheme” block in Fig. 3 and detailed below.

Step 1. Collect a corresponding set of process and metrology
data, which must be examined by DQIx and DQI,
respectively and confirmed as normal data (Xg, yg).
Then, convert the metrology data yg into the
corresponding class values (-1, 0, or 1) and send the
metrology data class values associated with the
process data (Xg) to the FD model.

Calculate the cost of the tree model using the latest
data for modeling and by 10-fold cross-validation.
Evaluate the cost of the model trees through the
combination and arrangement to find the best number
of leaf nodes of pruning which has the minimum-cost.
Construct a new FD model base on the best number of
leaf nodes.

Replace the old FD model in the FDS with the newly
constructed one.

o o

Xz2 < 21.3

Step 2.

Step 3.

Step 4.

Step 5.

Add (X, yc) into
the FD Model

y

Compute the cost of
the new FD Model using
a 10-fold cross-validation

Y

Find the best number of leaf
nodes of pruning which has
the minimum-cost

y

Prune the new FD Model by
the best number of
leaf nodes

RT&PIScheme

T
- e = = -

Fig. 3 Re-Training and Pruning (RT&P) Scheme in FDS.

III. ILLUSTRATIVE EXAMPLE

A piece of photolithography equipment in a TFT-LCD
factory in Taiwan is taken as the illustrative example. This
experiment involves 315 sets of corresponding real
metrology data and process data collected during the latest 6
months. Among those 315 data sets, the first 119 sets are used
to construct the FD model, while the rest 196 sets are applied
for on-line and real-time verification of the FDS. Furthermore,
the first 119 data sets include 8 sets of y>UCL (Class 1) data,
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TABLEI
FDS EXPERIMENTAL RESULTS

196 Without Pruning With Pruning
testing samples Case CD FA MD Accuracy Case CD FA | MD Accuracy
Free-Running Mode #1 174 21 1 0.888 #2 183 13 0 0.933
Re-Training Mode #3 193 2 1 0.985 #4 195 1 0 0.995

23 sets of y<LCL (Class -1) data, and 88 sets of normal (Class
0) data. On the other hand, the rest 196 sets of verification

data contains 5 sets of Class -1 data and 12 sets of Class 1 data.

Of course, all the data sets are checked and verified by the
DQIy and DQIx.

To evaluate the capability of FDS, an experiment including
two modes (the free-running mode and re-training mode) is
designed to compare the detection accuracy. And, each mode
has two cases (with and without pruning). The difference of
the two modes is that the re-training mode will re-train the FD
model once each newly collected data is received. As such,
Cases 1 and 2 belong to the free-running mode while Case 3
and 4 are the re-training mode. Cases 1 and 3 utilize the
simple re-training scheme (without pruning) while Cases 2
and 4 apply the RT&P scheme to build the first FD model and
perform the re-training process.

Table 1 presents the experimental results of the 4 cases.
The detection accuracy for all the 4 cases is above 88%.
However, Case 1 has the lowest accuracy owning to too many
FAs and 1 MD. As presented in Fig. 4 and Table 2, the first
FD model of Case 1 consists of 8 rules and 3 classes (Classes
-1, 0, 1) along with their corresponding relationships with the
process data. Thus, the FD model of Case 1 can be applied to
identify the quality of products in 3 categories. In Case 1,
most of the examples can be correctly detected, however it
still has 21 FAs and 1 MD. The incorrect detection examples
are depicted in Fig. 5. The dotted red circle in Fig 5(a) marks
the rule that causes MD in sample #46. The dotted red circles

Xg < 13.95

Rule 8
/

Rule 6 Rule 7
3\\ -

in Figs. 5(b) and 5(c) locate the rules that cause false alarms
in samples #25 and #130. As stated before, the first FD model
of Case 1 requires pruning to prevent the model from
overfitting. From Figs. 5(a), 5(b), and 5(c), we can conclude
that the circled parts in Fig. 4 are the places that require
pruning.

Case 2 uses the same free-running model for data
verification as Case 1, and further adopts the RT&P scheme
as shown in Fig. 3 to prune the initial FD model. The cost
curve of the first FD model with pruning by 10-fold cross

Actualy| Class
19.65 A
Sensor| Value

X22 < 21.3

x; <110.05

1
x
=
©
)

0 0
\ Rule4 Rule5 Ruleé

\\Rule 2

OEE
QBt=
\‘__/

(a) MD Occurs for Test Sample 46 (Actual Class = -1, Detected Class = 0).
(Actualy| ciass
21.30 0

(senso
X, | 110.00

Xg < 13.95

@ 52 74.80
20.00
1

X24 < 130.55

6 Yy 7/
Rule6 Rule7 /
~ P

Xoa 130.10 Rule 2

(b) FA Occurs for Test Sample 25 (Actual Class = 0, Detected Class =-1).

—_— Actualy| Class
21.85 0
Sensor| Value
~ R‘ulel _ X, 110.40
X; 85.00
ot
Fig. 4 The First FD Model of Cases 1 and 3 (without Pruning) o @ X1 < 110.05
X; .20
TABLE II @ I
THE FIRST FD MODEL OF CASES 1 AND 3 CONSIST OF 8 RULES R v
Rule 1 [If x5, <21.3 and x9< 13.95 and x,4< 130.55 then Class = -1 31 Eéig Rule 8
Rule 2 [If x5, <21.3 and x9< 13.95 and X»4 > 130.55 and x4 < 0.5005 then EE {\
Class =0 g: : §§ Rule4 Rule5 Rule6
Rule 3 [If x5, <21.3 and x9< 13.95 and x,4 > 130.55 and x4 > 0.5005 then o 2 ng N
Class = -1 ® :’5 2ED [d]
Rule 4 |If x,,< 21.3 and xo > 13.95 and x5 < 22.9 then Class = 1 (® G e Rule 2
Rule 5 [If X, < 21.3 and Xo >13.95 and x5 >22.9 then Class = 0 (c) FA Occurs for Test Sample 130 (Actual Class = 0, Detected Class = -1).
Rule 6 |If x5, >21.3 and x;, < 110.05 and x5< 24.65 then Class =0
Rule 7 [If x5, >21.3 and x; < 110.05 and x5 >24.65 then Class = -1 Fig. 5 Incorrect-Detection Examples of Case 1.
Rule 8 |If x5, >21.3 and x; >110.05 then Class =0
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validation is shown in Fig. 6. Figure 6 indicates that the
lowest cost happens when the number of leaf nodes is equal to
four (4). Therefore, the first FD model of Case 2 (with
pruning), which has only four rules, is shown in Fig. 7 and
Table 3.0bserving Table 1, it is clear that the re-training
mode can reduce FAs significantly when comparing with the
free-running mode (Case 1 vs. Case 3 and Case 2 vs. Case 4).
Besides, the pruning scheme can further enhance the
detection accuracy (Case 1 vs. Case 2 and Case 3 vs. Case 4).
In conclusion, Case 4 is the most accurate one (with 99.5%
accuracy) and, therefore, will be adopted for deployment.

FD Model Cost

Best Tree S:ize (minimum-cost)

A
i (N
1 2 3 4 5 1 7 8
Tree size (n—Jmher of leaf nodes)

Fig. 6 The Cost Curve of the First FD Model with Pruning by 10-Fold
Cross Validation.

X22<21.3

Rule 4

X5 < 22.9
Rule 1

Rule 2

Rule 3

Fig. 7 The First FD Model of Cases 2 and 4 (with Pruning).

TABLE III
THE FIRST FD MODEL OF CASES 2 AND 4 CONSIST OF 4 RULES
Rule 1 |Ifx,,<21.3 and x9< 13.95 then Class = -1
Rule 2 |Ifx,,<21.3 and x9 > 13.95 and x5< 22.9 then Class = 1
Rule3 |Ifx»<21.3 and x¢ > 13.95 and x5 > 22.9 then Class =0
Rule 4 |Ifxy > 21.3 then Class =0

Fault Detection

IV. DISCUSSION

The FDS is capable of detecting OOS products with
normal process parameters. Therefore, it can be applied to
perform on-line real-time inspection of product failures and
achieve workpiece-to-workpiece (W2W) fault inspection.
From the illustrative example presented in Section 3, we can
conclude that with enough sample data for modeling, the
inspection accuracy of FDS is greater than 90%. Nevertheless,
the FDS is unable to output a product quality conjecture value.
On the other hand, the virtual metrology system (VMS)
proposed by the authors [1], [15], [16], [17] can on-line
real-time conjecture the virtual metrology (VM) value of a
workpiece and generate the reliance index (RI) and global
similarity index (GSI) for indicating the reliance level of the
corresponding VM values. However, the VMS cannot detect
OOS products with normal process parameters.

If the FDS and VMS can be combined as shown in Fig. 8,
then the two schemes can take from the long and add to the
short such that the overall detection accuracy of abnormal and
OOS products can be enhanced. Observing Fig. 8, when a set
of process data enters the VMS, the DQIy will check whether
it is a normal process data. If it is a normal process data, it will
be forwarded to the FDS for on-line and real-time product
quality evaluation. Meanwhile, through the conjecture model
of VMS, the phrase-1 VM conjecture value (VM) along with
the accompanying RI/GSI values are also generated. In this
way, the un-sampled workpieces’ product quality can be
inspected and the corresponding VM values with RI/GSI can
also be conjectured by adopting the FDS+VMS scheme.

Moreover, on receiving the real metrology data, the DQI,
will be applied to check whether it is normal. If the collected
metrology data is normal, it will be sent with its
corresponding process data to the FDS and VMS for tuning
and re-training purposes. Also, the Phrase-II VM conjecture
value (VM) along with its RI/GSI values can be generated to
enhance the conjecture accuracy of VM.

By applying the illustrative example mentioned in Section
3, the effects of the FDS+VMS scheme is analyzed and
presented in Fig. 9. The pink blocks indicate where the OOS
products occur. Observing Fig. 9, we can see that VM,
approximately follows the actual metrology value with some
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conjecture errors. On the other hand, the accompany RI/GSI
values of VM demonstrate no significant out-of-threshold
warning signs due to the fact that the corresponding process
data are all in-spec. Therefore, it can be concluded that the
FDS can be applied to achieve better OOS product detection
rate when the process parameters are all within the
specifications.

V. SUMMARY AND CONCLUSIONS

This paper proposes a product quality FDS, which can
effectively detect OOS products with in-spec process
parameters. The FDS adopts the CART to build the model for
specifying the relationship between process data and in-spec
as well as OOS products. A re-training & pruning scheme
(RT&P scheme) which adopts the concept of the
minimum-cost for pruning is designed within the FD model to
prevent overfitting. With correct process data, the FD model
can identify defected or failure products on-line and in real
time. When detecting OOS products, the proposed scheme
will warm the engineers to take necessary actions in time,
which will prevent producing massive OOS products. In data
preprocessing, the FDS adopts the DQIx and DQI, to prevent
bad quality process or metrology data from affecting the
accuracy of FD models. However, since the main purpose of
FDS lies in product quality detection, it is unable of
outputting a product quality conjecture value. Therefore, by
integrating the FDS with the VMS, the overall capability of
product quality monitoring and evaluation as well as W2W
APC support can be achieved.

ACKNOWLEDGMENT

The authors would like to thank Chi Mei Optoelectronics
Corporation, Ltd. (CMO) at Taiwan for providing the raw
data of lithography equipment used in the illustrative
examples.

REFERENCES

[1] Y.-T. Huang, H.-C. Huang, F.-T. Cheng, T.-S. Liao, and F.-C. Chang,
“Automatic Virtual Metrology System Design and Implementation,” in
Proc. 2008 IEEE Conference on Automation Science and Engineering
(CASE 2008), Washington DC, USA, pp.223-229, August 2008.

[2] Y. W. Kuan, L. C. Chew, and L. W. Jau, “Method for Proposing Sort
Screen Thresholds based on Modeling Etest/Sort-Class in
Semiconductor Manufacturing,” in Proc. 2008 IEEE Conference on
Automation Science and Engineering (CASE 2008), Washington DC,

USA, pp.236-241, August 2008.

[3] L. L. Lee, C. D. Schaper, and W. K. Ho, “Real-Time Predictive Control
of Photoresist Film Thickness Uniformity,” IEEE Transactions on
Semiconductor Manufacturing, vol. 15, no. 1, pp. 51-59, February 2002.

[4] C. Hess and L. H. Weiland, “Extraction of Wafer-Level Defect Density
Distributions to Improve Yield Prediction,” /EEE Transactions on
Semiconductor Manufacturing, vol. 12, no. 2, pp. 175-183, February
1999.

[5] Q. G. Ali and Y. Chen, “Design Quality and Robustness with Neural
Networks”, IEEE Transactions on Neural Networks, pp 1518-1527, Vol.
10, No. 6, November 1999.

[6] R.H.Kewley, M. J. Embrechts, and C. Breneman, “Data Strip Mining for
the Virtual Design of Pharmaceuticals with Neural Networks”, IEEE
Transactions on Neural Networks, pp 668-769, Vol. 11, No. 3, May
2000.

[7] A. Dhond, A. Gupta, and S. Vadhavkar, “Data Mining Techniques for
Optimizing Inventories for Electronic Commerce,” in Proc. KDD 2000,
pp 480-486, Boston.

[8] 2003 International Technology Roadmap for Semiconductors (ITRS),
December 2003, <http://public.itrs.net/>.

[9] D. C. Montgomery, Introduction to Statistical Quality Control 5th
Edition, Arizona State University, John Wiley & Sons, Inc., 2005.

[10]K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis, London;
New York, Academic Press, 1979.

[11]1. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, San Francisco, CA: Morgan Kaufman, 2005.
[12]L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification

and Regression Trees, London, U.K.: Chapman and Hall, 1984.

[13]R. L. Lawrence and A. Wright, “Rule-based Classification Systems
Using Classification and Regression Tree (CART) Analysis,”
Photogrammetric Eng. Remote Sensing, vol. 67, no. 10, pp. 1137-1142,
Oct. 2001.

[14]D. C. Montgomery, Design and Analysis of Experiments, New York,
John Wiley & Sons, Inc., 2005.

[15]F.-T. Cheng, H.-C. Huang, and C.-A. Kao, “Dual-Phase Virtual
Metrology  Scheme,” [EEE Tranmsactions on  Semiconductor
Manufacturing, vol. 20, no. 4, pp. 566-571, November 2007.

[16]F.-T. Cheng, Y.-T. Chen, Y.-C. Su, and D.-L. Zeng, “Evaluating Reliance
Level of a Virtual Metrology System,” IEEE Transactions on
Semiconductor Manufacturing, vol. 21, no. 1, pp. 92-103, February
2008.

[17]W.-M. Wu, F.-T. Cheng, D.-L. Zeng, T.-H. Lin, and J.-F. Chen,
“Developing A Selection Scheme for Dual Virtual-Metrology Outputs,”
in Proc. 2008 IEEE Conference on Automation Science and Engineering
(CASE 2008), Washington DC, USA, pp.230-235, August 2008.

[18]T. W. Anderson, “Asymptotic Theory for Principal Component
Analysis,” Ann. Math. Statist., vol. 34, pp. 122—148, 1963.

[19]G. A. Carpenter and S. Grossberg, “ART 2: Self-Organization of Sable
Category Recognition Codes for Analog Input Patterns,” Applied Optics,
vol.26, no.12, pp.4919-4930, Dec 1987.

932



	出席ICRA2009國軍心得報告.pdf
	ICRA2009Paper(0753).pdf

