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摘要 

本次出國之目的為參加於日本神戶市(Kobe, Japan)舉行之2009 年IEEE機器人與自

動化國際研討會(2009 IEEE International Conference on Robotics and Automation, ICRA 

2009)，並發表學術研究論文。 ICRA 2009國際研討會之主題為”Robotics and IRT 

(Information and Robotics Technology) for Livable Societies.＂本次會議共有從46個國

家，1626篇技術論文(Technical Papers)及36段長影片(Long Video)投稿，審查結果僅696

篇技術論文及16段長影片獲接受於本次大會發表，接受率分別僅約42.8%及44.4%。本次

大會於98年5月12日、13日及17日共排定有26個機器人與自動化相關之Workshops與

Tutorials，並舉辦三場全體出席的大會演講(Plenary Talks)、一場科學論壇(Science 

Forum)、一場工業論壇(Industrial Forum)與一場公民論壇(Citizen’s Forum)。本次大會也

利用5月14日至16日3天時間，於同一時間分13平行場次(Parallel Tracks)，共有149場次 

(Sessions)，將所有論文利用口頭方式公開發表。本人在本次會議發表論文乙篇「發展一

個產品品質錯誤偵測機制(Developing a Product Quality Fault Detection Scheme)」，被安

排於5月14日下午工廠自動化(Factory Automation)場次報告。 
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一、目的 

本次出國之目的為參加於日本神戶市(Kobe, Japan)舉行之2009 年IEEE機器人與自

動化國際研討會(2009 IEEE International Conference on Robotics and Automation, ICRA 

2009)，並發表學術論文乙篇，經費來源為行政院國家科學委員會補助國內專家學者出

席國際學術會議經費。 

二、過程 

本次2009年IEEE 機器人與自動化國際研討會(ICRA 2009)於98年5月12日至17日在

日本神戶市(Kobe, Japan)舉行。ICRA 2009國際研討會之主題為”Robotics and IRT 

(Information and Robotics Technology) for Livable Societies.＂本次會議共有從46個國

家，1626篇技術論文(Technical Papers)及36段長影片(Long Video)投稿，審查結果僅696

篇技術論文及16段長影片獲接受於本次大會發表，接受率分別僅約42.8%及44.4%。 

本次大會於98年5月12日、13日及17日共排定有26個機器人與自動化相關之

Workshops與Tutorials，並舉辦三場全體出席的大會演講(Plenary Talks)、一場科學論壇

(Science Forum)、一場工業論壇(Industrial Forum)與一場公民論壇(Citizen’s Forum)。本

次大會也利用5月14日至16日3天時間，於同一時間分13個平行場次(Parallel Tracks)，共

有149場次(Sessions)，將所有論文利用口頭方式公開發表。本人在本次會議發表論文乙

篇「發展一個產品品質錯誤偵測機制(Developing a Product Quality Fault Detection 

Scheme)」，被安排於5月14日下午工廠自動化(Factory Automation)場次報告，論文資料

如下： 
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(中文題目：發展一個產品品質錯誤偵測機制) 

Yi-Ting Huang, Fan-Tien Cheng, and Min-Hsiung Hung, “Developing a Product 

Quality Fault Detection Scheme,” in Proceedings of 2009 IEEE International 

Conference on Robotics and Automation, Kobe, Japan, pp. 927-932, May 12-17, 2009. 

三、心得 

本次大會之特色除了3 場邀請之專題演講(Invited Plenary Talks)外，也舉辦機

器人競賽(Robot Challenge)，從世界各地來之學生隊伍，帶著他們的機器人到會場參

加比賽。此外，大會也安排有展示攤位，展覽各式機器人、發展軟體等。本次國際學術

會議，國內有多位的專家學者參加，包括：台大電機系羅仁權教授與傅立成教授、交通

大學電控系胡竹生教授與楊谷洋教授、成大製造所鄭芳田教授等人。其中台大電機系羅

仁權教授獲邀於5月12日工業論壇(Industrial Forum)中發表演講。 

整體而言，本次大會相當成功。除了參加人數眾多外，各項舉辦之競賽與活動也為

大家所讚許，值得國內舉辦國際研討會時參考。 

四、建議事項 

最後，感謝國科會提供經費補助國內專家學者出席國際研討會，也期盼國內學者能

繼續積極參與國際學術活動並發表論文，以期提升我國之國際學術地位。 

五、攜回資料名稱及內容 

1. Proceedings CD of 2009 IEEE International Conference on Robotics and 

Automation. 
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附錄：「發展一個產品品質錯誤偵測機制(Developing a Product 
Quality Fault Detection Scheme)」論文內容 



� 
Abstract—In current semiconductor and TFT-LCD factories, 

periodic sampling is commonly adopted to monitor the stability 
of manufacturing processes and the quality of products (or 
workpieces). As for those non-sampled workpieces, their quality 
is usually monitored by such as a 
fault-detection-and-classification (FDC) server. However, this 
method may fail to detect defected products. For example, a 
workpiece with all the individual manufacturing process 
parameters being in-spec may still result in out-of-spec product 
quality. Under this circumstance, unless this certain defected 
workpiece is selected for sampling by chance, it cannot be 
detected by simply monitoring the manufacturing process 
parameters collected from the production equipment. To solve 
the abovementioned problem, this research proposes a product 
quality fault detection scheme (FDS), which utilizes the 
classification and regression tree to implement a model for 
identifying the relationship between process parameters and 
out-of-spec products. Through this model, each set of normal 
manufacturing process parameters can be real-time and on-line 
examined to detect failure or defected products. 

Index Terms—Fault Detection Scheme, Classification and 
Regression Tree, Virtual Metrology. 

I. INTRODUCTION 
n current semiconductor and TFT-LCD factories, 
periodic sampling is commonly adopted to monitor the 

stability of manufacturing processes and the quality of 
products (or workpieces). As for those non-sampled 
workpieces, their quality is usually monitored by such as a 
fault-detection-and-classification (FDC) server. However, 
this method may fail to detect defected products. For example, 
a workpiece with all the individual manufacturing process 
parameters being in-spec may still result in out-of-spec 
product quality. Under this circumstance, unless this certain 
defected workpiece is selected for sampling by chance, it 
cannot be detected by simply monitoring the manufacturing 
process parameters collected from the production equipment. 

A TFT-LCD photolithography process is taken as the 
illustrative example. Fig. 1(a) presents the real metrology data 
of some selected samples and their control limits (upper 
control limit (UCL) = 24, lower-control-limit (LCL) = 21). 
As shown in Fig. 1, we can easily observe 13 out-of-spec 
(OOS) metrology data, in samples No. 4, 5, 6, 7, 8, 9, 10, 11, 
12, 14, 15, 24 and 70, respectively. However, further 
investigations show that all the 24 corresponding process data 
of these 13 samples are within the specifications, as shown in 

 
1. The authors would like to thank the National Science Council of the 

Republic of China for financially supporting this research under 
contract No: NSC96-2622-E-006-043. This work is Taiwan R.O.C. and 
U.S.A. Patents Pending. 

2. The corresponding author (e-mail: tinahuang@super.ime.ncku.edu.tw). 

Fig. 1(b), where only x1, x4, x16, x20 of those 24 corresponding 
process data are displayed. 

To resolve the problem mentioned above, this research 
proposes a product quality fault detection scheme (FDS), 
which utilizes the normal process data collected from 
production equipment to perform on-line and real-time 
product quality monitoring. When an OOS workpiece is 
detected, the proposed scheme will alarm the process 
engineers to perform subsequent analysis or measurement of 
the failure or defected products. 

To implement the FDS, first we need to collect 
corresponding sets of historical metrology and process data to 
build a fault detection model (FD model). Note that the 
collected metrology data must include both in-spec and 
out-of-spec ones for building a complete model. Besides, the 
collected process and metrology data must be preprocessed to 
ensure their data quality for avoiding deterioration in the FD 
model. 

To on-line and real-time evaluate the quality of the 
collected process and metrology data for the FDS, the 
automatic data quality evaluation methods proposed by the 
authors [1] are adopted in this research. 

Many studies related to product and process quality 
evaluations have been carried out in the past [2], [3], [4], [5], 

Developing a Product Quality Fault Detection Scheme1 

Yi-Ting Huang2, Student Member, IEEE, Fan-Tien Cheng, Fellow, IEEE, and 
Min-Hsiung Hung, Senior Member, IEEE 
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(a) Examples for OOS Product Metrology Data. 

 
(b) Selected Process Data Corresponding to the Metrology Data Shown in (a).

 
Fig. 1 Product Quality OOS Example. 
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[6], [7]. However, with the fast development of 
manufacturing technologies, new inspection techniques are 
needed. Taking the semiconductor industry for example, the 
semiconductor technology roadmap proposed by the 
International SEMATECH [8] shows that the manufacturing 
process nowadays is getting more and more complex. There 
are more factors that are influential to the quality of products, 
and many process parameters are correlated. Given this 
situation, the traditional single-variate statistical process 
control methods [9] are no longer sufficient for the current 
semiconductor industry. Instead, the multivariate statistical 
analysis [10] and data mining technology [11] are demanded 
for making data-driven decisions. In this way, the causes or 
hidden information of process abnormalities can be 
effectively discovered based on the professional knowledge 
of process engineers and the experience rules. 

In view of the current status, a data mining technique called 
the “classification and regression tree (CART)” [12], [13] is 
adopted by the proposed FDS to construct a model for 
identifying the relationship between process parameters and 
in-spec or OOS products. As such, the FDS will be able to 
on-line and real-time detect failure or defected products. The 
FDS is different from the conventional statistical methods 
(e.g. one-way plots [14], ANOVA analysis[14], etc.) which 
do not efficiently address the problem of confounding effects 
from multiple factors. Therefore, the FDS is more applicable 
in handling and detecting OOS products resulted from special 
process parameter combinations. 

The remainder of this paper is organized as follows. 
Section 2 explains the mechanism of the proposed product 
quality FDS. Section 3 presents an illustrative example of the 
photolithography equipment in a TFT-LCD factory in Taiwan. 
Section 4 discusses the advantages and disadvantages of FDS 
in comparison with the virtual metrology system (VMS) [1], 
[15], [16], [17]. and proposes an integrated scheme with 
FDS+VMS. Finally, Section 5 provides a summary and 
conclusions. 

II. PRODUCT QUALITY FAULT DETECTION SCHEME 
The complete product quality FDS proposed in this paper 

is mainly composed of two models, namely the data quality 

evaluation model and the FD model as shown in Fig. 2. First, 
when a set of process data is collected, the DQIX will be 
calculated to define whether this process data is abnormal (e.g. 
exceeds the control limits) or not. If true, a warning message 
requesting further analysis and confirmation will be sent to 
the process engineers; otherwise, this process data will be 
forwarded to and applied by the FDS to conduct on-line and 
real-time monitoring of product qualities. During this 
procedure, the FDS will notify the engineers to perform real 
measurement when OOS workpieces are detected. On 
receiving the real metrology data, the metrology data quality 
evaluation module will perform real-time evaluation via DQIy 
to identify abnormalities resulted from measurement errors or 
other external factors (such as particle pollution). If 
abnormalities exist, a warning message will be sent to ask the 
engineers to confirm the quality of the metrology data. 
Finally, all the normal corresponding data sets will be 
forwarded to the FD model to perform re-training and execute 
the pruning process. The details of Fig. 2 including data 
collection, data quality evaluation (DQIX and DQIy models) 
and FD model are explained as follows.  
1) Data Collection 

This procedure starts with collecting the historical 
metrology data. Then, the process data which correspond to 
the collected metrology data are searched. If the 
corresponding process data are found, the complete set of 
process and metrology data will be included; otherwise, the 
metrology data with no accompanying process data will be 
deleted. The above steps should be executed until the 
collected historical data sets are enough for building the FD 
model. To establish a complete model for on-line and 
real-time FDS, the quality of all the collected process and 
metrology data sets must be normal, and the metrology data 
must include both in-spec and OOS ones. Also, with more 
OOS samples collected for building the FDS model, the 
relationship or rules between process parameters and OOS 
products can be described more specifically. After all the 
required historical metrology data and process data are 
collected, data cleaning processes should be performed 
manually to screen out the abnormalities of process and 
metrology data. 

 
Fig. 2  Real-time and On-line Product Quality Fault Detection Scheme with Data Quality Evaluation. 
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2)  Data Quality Evaluation 
After collecting enough number of normal historical data 

sets, the initial DQIX and DQIy models can be constructed. 
Since the standardized process data generated by the DQIX 
model must be utilized to create the first DQIy model, the 
DQIX model should be built first [1]. The DQIX and DQIy 
models are summarized as follows. Firstly, principal 
component analysis (PCA) is applied to analyze all the 
collected equipment process data; then Euclidean distance is 
utilized to unify all the principal components into a single 
index denoted process data quality index (DQIX) for 
evaluating the quality of process data. Secondly, adaptive 
resonance theory 2 (ART2) and normalized variability (NV) 
are applied to define the metrology data quality index (DQIy) 
for appraising the quality of metrology data. The thresholds 
of both DQIX and DQIy are also defined accordingly. 
3) Fault Detection Model 

The FD model is created after the DQIX and DQIy models, 
since the data used for constructing the FD model need to be 
checked by DQIX and DQIy first. To begin with, the 
metrology data (y) are divided in to 3 quality classes 
according to the product quality control limits, i.e. the upper 
control limit (UCL) and the lower control limit (LCL). The 3 
quality classes are: (1) Class 0: the metrology data (y) is 
within the control limits (y � LCL and y � UCL); (2) Class -1: 
the metrology data (y) is lower than LCL (y<LCL); and (3) 
Class 1: the metrology data (y) exceeds UCL (y>UCL). 

Next, the quality classes with the corresponding process 
data are utilized by the classification and regression trees 
(CART) [12] for constructing the FD model. The FD model 
can discover process-data combination rules that are 
influential to the quality of products. Also, through the 
procedure mentioned above, the process data are classified in 
to a tree-like structural detection model. 

A CART is a binary decision tree which adopts the GINI 
Index (IBM Intelligent Miner) as the branch criteria [12]. 
Each parent node in a CART can be split into 2 child nodes, 
and the data set is partitioned into mutually exclusive 
sub-datasets in each split. The more homogeneous the data in 
a sub-dataset are, the more samples we can find in a class. 

The constructed FD model must be able to carry out 
on-line and real-time product quality detection and maintain 
90% and above accuracy by avoiding too many false alarms 
(FAs) and/or miss detections (MDs). For the semiconductor 
and TFT-LCD industries, MDs are much more serious than 
FAs. Therefore, a practical FD mechanism should have a low 
MD rate. Considering this requirement, a re-training & 
pruning scheme (RT&P scheme) is designed in the FD model. 
The RT&P scheme adopts the concept of the minimum-cost 
for pruning the relatively insignificant rules in a model tree to 
avoid model overfitting. In the FD model, the RT&P scheme 
mainly functions to prune off leaf nodes with a few samples 
to reduce FAs. However, over-pruning of the model tree 
might also increase the frequency of MD. Therefore, the 
RT&P scheme sets up the cost for each error detection: MD 
costs 2, FA costs 1, and correction detection (CD) costs 0. 

Next, the RT&P scheme computes the cost of the model trees 
using the latest data for modeling and a10-fold 
cross-validation [11]. The cost of the model trees are 
evaluated through the combination and arrangement to find 
the best number of leaf nodes of pruning which has the 
minimum-cost. Finally, construct a new FD model by the best 
number of leaf nodes. The above are the procedures for 
implementing the first FD model. The on-line re-training and 
pruning procedures of FD model are presented in the “RT&P 
Scheme” block in Fig. 3 and detailed below. 
Step 1. Collect a corresponding set of process and metrology 

data, which must be examined by DQIX and DQIy 
respectively and confirmed as normal data (XG, yG). 
Then, convert the metrology data yG into the 
corresponding class values (-1, 0, or 1) and send the 
metrology data class values associated with the 
process data (XG) to the FD model.  

Step 2.  Calculate the cost of the tree model using the latest 
data for modeling and by 10-fold cross-validation. 

Step 3.  Evaluate the cost of the model trees through the 
combination and arrangement to find the best number 
of leaf nodes of pruning which has the minimum-cost. 

Step 4. Construct a new FD model base on the best number of 
leaf nodes. 

Step 5.  Replace the old FD model in the FDS with the newly 
constructed one.  

III. ILLUSTRATIVE EXAMPLE 
A piece of photolithography equipment in a TFT-LCD 

factory in Taiwan is taken as the illustrative example. This 
experiment involves 315 sets of corresponding real 
metrology data and process data collected during the latest 6 
months. Among those 315 data sets, the first 119 sets are used 
to construct the FD model, while the rest 196 sets are applied 
for on-line and real-time verification of the FDS. Furthermore, 
the first 119 data sets include 8 sets of y>UCL (Class 1) data, 

Fig. 3  Re-Training and Pruning (RT&P) Scheme in FDS. 
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TABLE II 
THE FIRST FD MODEL OF CASES 1 AND 3 CONSIST OF 8 RULES 

Rule 1 If x22 < 21.3 and x9 < 13.95 and x24 < 130.55 then Class = -1 
Rule 2 If x22 < 21.3 and x9 < 13.95 and x24 �  130.55 and x4 < 0.5005 then 

Class = 0 
Rule 3 If x22 < 21.3 and x9 < 13.95 and x24 � 130.55 and x4 � 0.5005 then 

Class = -1 
Rule 4 If x22 < 21.3 and x9 � 13.95 and x5 < 22.9 then Class = 1 
Rule 5 If x22 < 21.3 and x9 � 13.95 and x5 � 22.9 then Class = 0 
Rule 6 If x22 � 21.3 and x1 < 110.05 and x5 < 24.65 then Class = 0 
Rule 7 If x22 � 21.3 and x1 < 110.05 and x5 � 24.65 then Class = -1 
Rule 8 If x22 � 21.3 and x1 � 110.05 then Class = 0 

23 sets of y<LCL (Class -1) data, and 88 sets of normal (Class 
0) data. On the other hand, the rest 196 sets of verification 
data contains 5 sets of Class -1 data and 12 sets of Class 1 data. 
Of course, all the data sets are checked and verified by the 
DQIy and DQIX. 

To evaluate the capability of FDS, an experiment including 
two modes (the free-running mode and re-training mode) is 
designed to compare the detection accuracy. And, each mode 
has two cases (with and without pruning). The difference of 
the two modes is that the re-training mode will re-train the FD 
model once each newly collected data is received. As such, 
Cases 1 and 2 belong to the free-running mode while Case 3 
and 4 are the re-training mode. Cases 1 and 3 utilize the 
simple re-training scheme (without pruning) while Cases 2 
and 4 apply the RT&P scheme to build the first FD model and 
perform the re-training process. 

Table 1 presents the experimental results of the 4 cases. 
The detection accuracy for all the 4 cases is above 88%. 
However, Case 1 has the lowest accuracy owning to too many 
FAs and 1 MD. As presented in Fig. 4 and Table 2, the first 
FD model of Case 1 consists of 8 rules and 3 classes (Classes 
-1, 0, 1) along with their corresponding relationships with the 
process data. Thus, the FD model of Case 1 can be applied to 
identify the quality of products in 3 categories. In Case 1, 
most of the examples can be correctly detected, however it 
still has 21 FAs and 1 MD. The incorrect detection examples 
are depicted in Fig. 5. The dotted red circle in Fig 5(a) marks 
the rule that causes MD in sample #46. The dotted red circles 

in Figs. 5(b) and 5(c) locate the rules that cause false alarms 
in samples #25 and #130. As stated before, the first FD model 
of Case 1 requires pruning to prevent the model from 
overfitting. From Figs. 5(a), 5(b), and 5(c), we can conclude 
that the circled parts in Fig. 4 are the places that require 
pruning. 

Case 2 uses the same free-running model for data 
verification as Case 1, and further adopts the RT&P scheme 
as shown in Fig. 3 to prune the initial FD model. The cost 
curve of the first FD model with pruning by 10-fold cross 

 
(a) MD Occurs for Test Sample 46 (Actual Class = -1, Detected Class = 0).

 

(b) FA Occurs for Test Sample 25 (Actual Class = 0, Detected Class = -1).
 

 
(c) FA Occurs for Test Sample 130 (Actual Class = 0, Detected Class = -1).

 
Fig. 5 Incorrect-Detection Examples of Case 1. 

 
Fig. 4  The First FD Model of Cases 1 and 3 (without Pruning) 

TABLE I  
FDS EXPERIMENTAL RESULTS 

Without Pruning  With Pruning  196  
testing samples Case   CD FA MD Accuracy Case CD FA MD Accuracy 

Free-Running Mode #1   174 21 1 0.888 #2 183 13 0 0.933 
Re-Training Mode #3   193 2 1 0.985 #4 195 1 0 0.995 
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validation is shown in Fig. 6. Figure 6 indicates that the 
lowest cost happens when the number of leaf nodes is equal to 
four (4). Therefore, the first FD model of Case 2 (with 
pruning), which has only four rules, is shown in Fig. 7 and 
Table 3.Observing Table 1, it is clear that the re-training 
mode can reduce FAs significantly when comparing with the 
free-running mode (Case 1 vs. Case 3 and Case 2 vs. Case 4). 
Besides, the pruning scheme can further enhance the 
detection accuracy (Case 1 vs. Case 2 and Case 3 vs. Case 4). 
In conclusion, Case 4 is the most accurate one (with 99.5% 
accuracy) and, therefore, will be adopted for deployment. 

IV. DISCUSSION  
The FDS is capable of detecting OOS products with 

normal process parameters. Therefore, it can be applied to 
perform on-line real-time inspection of product failures and 
achieve workpiece-to-workpiece (W2W) fault inspection. 
From the illustrative example presented in Section 3, we can 
conclude that with enough sample data for modeling, the 
inspection accuracy of FDS is greater than 90%. Nevertheless, 
the FDS is unable to output a product quality conjecture value. 
On the other hand, the virtual metrology system (VMS) 
proposed by the authors [1], [15], [16], [17] can on-line 
real-time conjecture the virtual metrology (VM) value of a 
workpiece and generate the reliance index (RI) and global 
similarity index (GSI) for indicating the reliance level of the 
corresponding VM values. However, the VMS cannot detect 
OOS products with normal process parameters.  

If the FDS and VMS can be combined as shown in Fig. 8, 
then the two schemes can take from the long and add to the 
short such that the overall detection accuracy of abnormal and 
OOS products can be enhanced. Observing Fig. 8, when a set 
of process data enters the VMS, the DQIX will check whether 
it is a normal process data. If it is a normal process data, it will 
be forwarded to the FDS for on-line and real-time product 
quality evaluation. Meanwhile, through the conjecture model 
of VMS, the phrase-I VM conjecture value (VMI) along with 
the accompanying RI/GSI values are also generated. In this 
way, the un-sampled workpieces’ product quality can be 
inspected and the corresponding VM values with RI/GSI can 
also be conjectured by adopting the FDS+VMS scheme. 

Moreover, on receiving the real metrology data, the DQIy 
will be applied to check whether it is normal. If the collected 
metrology data is normal, it will be sent with its 
corresponding process data to the FDS and VMS for tuning 
and re-training purposes. Also, the Phrase-II VM conjecture 
value (VMII) along with its RI/GSI values can be generated to 
enhance the conjecture accuracy of VM. 

By applying the illustrative example mentioned in Section 
3, the effects of the FDS+VMS scheme is analyzed and 
presented in Fig. 9. The pink blocks indicate where the OOS 
products occur. Observing Fig. 9, we can see that VMI 
approximately follows the actual metrology value with some 

 
Fig. 7 The First FD Model of Cases 2 and 4 (with Pruning).

 
Fig. 6 The Cost Curve of the First FD Model with Pruning by 10-Fold 

Cross Validation. 

TABLE III 
THE FIRST FD MODEL OF CASES 2 AND 4 CONSIST OF 4 RULES 

Rule 1 If x22 < 21.3 and x9 < 13.95 then Class = -1 
Rule 2 If x22 < 21.3 and x9 �  13.95 and x5 < 22.9 then Class = 1 
Rule 3 If x22 < 21.3 and x9 �  13.95 and x5 �  22.9 then Class = 0 
Rule 4 If x22 �  21.3 then Class = 0 

 
Fig. 8  Integrated Scheme with FDS + VMS. 
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conjecture errors. On the other hand, the accompany RI/GSI 
values of VMI demonstrate no significant out-of-threshold 
warning signs due to the fact that the corresponding process 
data are all in-spec. Therefore, it can be concluded that the 
FDS can be applied to achieve better OOS product detection 
rate when the process parameters are all within the 
specifications. 

V. SUMMARY AND CONCLUSIONS   
This paper proposes a product quality FDS, which can 

effectively detect OOS products with in-spec process 
parameters. The FDS adopts the CART to build the model for 
specifying the relationship between process data and in-spec 
as well as OOS products. A re-training & pruning scheme 
(RT&P scheme) which adopts the concept of the 
minimum-cost for pruning is designed within the FD model to 
prevent overfitting. With correct process data, the FD model 
can identify defected or failure products on-line and in real 
time. When detecting OOS products, the proposed scheme 
will warm the engineers to take necessary actions in time, 
which will prevent producing massive OOS products. In data 
preprocessing, the FDS adopts the DQIX and DQIy to prevent 
bad quality process or metrology data from affecting the 
accuracy of FD models. However, since the main purpose of 
FDS lies in product quality detection, it is unable of 
outputting a product quality conjecture value. Therefore, by 
integrating the FDS with the VMS, the overall capability of 
product quality monitoring and evaluation as well as W2W 
APC support can be achieved. 
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