Producer Responsibility in the Tyre Industry

End of life tyre-derived products a Sustainable Resource

F. Cinaralp, Secretary General

European Tyre & Rubber Manufacturers Association

Tyre industry in Europe:

- 11 tyre corporate members
- Turnover: € 34 billion
 ETRMA members realise 66% tyre
 w/w TU;
 46% is realised in Eu27
- Tyre market ~300 million tyres (2nd biggest market in the world)
- 93 producing plants
- 22 % of the worldwide production
- R&D: up to 4 % of annual turnover

• EU 27: No landfill

as from July 2006!

- Continuously guarantee ecological treatment
- Economically viable solutions
- Historic stockpiles
- Exports control

Environmental Impact of Tires during their Life Cycle

Source: ETRMA; based on Eco-Indicator 99 methods for each phase. * Landfill is forbidden since 07/2006

Used Tyres Recovery in Europe 1994 - 2006

The European Tyre Producers Strategy: Promotion of Producer Responsibility

T.I. objectives:

- To promote environmentally friendly & economically sound and sustainable recycling & recovery solutions
- <u>Not</u> to <u>discriminate</u> between <u>recycling processes and recovery</u> <u>options</u>.
- To promote R&D programs to develop <u>new</u> and more efficient recycling & recovery channels (~5 millions € spent/year)

Conditions of success:

- Statutory regime setting PR
- Creation of an ELT management not- for-profit company for managing, collecting and further treatment
- Having a dedicated financing scheme (separate line on invoice).

Allowed an efficient & transparent communication with local authorities ; securing 100% traceability within the ELT value chain

Country specific implementation and ELT management companies

The SYSTEM promoted by TI IN EUROPE, on a VOLUNTARY basis

Mandatory TAKE BACK and Voluntary FUND

REPORTING MECHANISMS TO NATIONAL AUTHORITIES under Producer Responsibility

performed by the ELT management company,

on behalf of the tyre producers

European Tyre & Rubber Manufacturers Association

Information

Each year, authorities being in general informed by:

- 1) *Producers*: about the quantities (per type, units and tons) they sold on the national market during the previous year.
- 2) *Producers*: about the quantities (per type and tons) recovered the previous year and the way they recovered them (including export).
- 3) Collecting companies: where required, about quantities collected during the previous year and destinations (recovery routes).
- 4) *Recovering companies*: about the quantities recovered and destinations during the previous year (including quantities in stock).

Authorities (e.g. Environmental Ministry/Agency) in several countries are publishing relevant overall reports.

What are the recovery routes for end of life tyres?

Criteria for **sustainable** recovery routes:

- Intrinsic technical properties of the tyre
- Full respect of environmental and health requirements
- Contribution to saving natural resources
- Economic viability \rightarrow product/process standards

The main uses for ELTs include alternative sources of energy and materials:

Energy Recovery Alternative Fuel (mainly for cement kilns)

Material Recovery Construction Material

<u>31,6%</u>

(~ 1023 kt)

Crumb or Ground Rubber

Substitute for anthracite in steel plants (Electric Arc furnaces)

ELT Derived products: material recycling

Draining capacities and mechanical properties are used in <u>civil</u> <u>engineering</u> applications

6% (~162.000t)

Benefits

Tyre are lightweight good insulators permeable Noise and Shock absorbent long lasting

Environmental impact

comparable and lower to alternative construction materials

An example: Properties of shred used in Civil Engineering :

Applications : Tire-Derived Aggregate (TDA)

- Size : 5X5 to 30X30
- Weight : 1/3 to $\frac{1}{2}$ weight of soil (1 Ton of shred 5X5 = 2,7 Ton aggregate)
- Volume : 1 m3 = 100 PC tyres
- Drainage : 10 times better than well graded soil
- Insulation : 8 times better than gravel
- Lateral foundation wall pressure : 1/2 that of soil

Study on the Use of ELT derived products in steel plants

•Use of ELT derived products in steel plants:

- Tyres contain Carbon and Iron that may be used partly or entirely to substitute the use of anthracite in the ovens
- 1,7kg Tyres = 1 kg of anthracite
- unlimited capacity; current capacity used 7000 t
- Benefits

Used as a source of carbon & steel during the manufacturing of steel

Environmental impact

Positive environmental impact concerning dust and gaseous effluents;

overall there are no significant differences in the overall environmental impact due to the use of Tyres or anthracite.

ELT Derived products: material recycling

Powder/ Crumb usage

21% (~567.000t)

ELT Derived products: material recycling

Applications

- Moulded Rubber Products : 12% (~324.000t) Wheels for caddies, dustbins, wheel barrows, Lawnmowers, urban sign posting
- → Replaces rubber (natural and synthetic)
- Soil applications : 8% (~216.000t)
 Flooring (playgrounds, sports fields)
 Shock absorbent mats (in stables, at schools)
 Paving blocks; Roofing materials (in place of tuiles/ardoises on roofs)
- → Replaces sand, gravels, cement, etc
- Rubber modified asphalt : ~ 1%
 - Make use of the characteristics of rubber = elasticity, noise absorbing...
- ➔ Increased road life span, reduced noise emissions, increased safety on wet driving conditions

Environmental impact:

Sport floors with ELT granulate infill have no impact on the aqueous environment or human health when applied indoor or outdoor (recent studies in F, NL, CH)

Standardisation:

European (CEN) Standards under development: TC 217 (Sports Areas) and PC/366

ELT derived products as alternative fuel

overall 31,6% (~ 1 023 kt)

Used for its calorific power mostly in cement kilns

27% (~812,000t)

- Other uses:
- ° Industrial boilers
 - ° Co-incineration with municipal wastes
 - ° Power stations

Properties:

- 1 tonne of tyre = 1 tonne of good quality coal = 750 Kg of fuel
- Calorific power of a tyre = 1 passenger car tyre = 7.6 L of fuel

ELT derived products as alternative fuel

"Biomass effect" of ELTs combustion

- 20% of the weight of ELT is latex
- Latex is polyisoprene (C5H8) : it is composed of 88 of Carbon atoms
- → The complete combustion of 1 ton of ELTs is equivalent to 647 Kg of CO2

Energy Content and CO2 Emissions from Fuels:

Energy Content and CO2 Emissions from Fuels:

Fuel	Energy (GJ/t)	Emissions	
		kgCO ₂ /t	kgCO ₂ /GJ
Tires	32.0	2,720	85
Carbon	27.0	2,430	90
Pet coke	32.4	3,240	100
Diesel oil	46.0	3,220	70
Natural gas	39.0	1,989	51
Wood	10.2	1,122	110

Source: World Business Council on Sustainable Development (WBCSD) 2005 – CO2 Emission Factors of Fuels

Thank you for your attention

European Tyre & Rubber Manufacturers Association