出國報告(出國類別:實習)

中美合作天氣監測輔助系統發展 偏極化雷達 QPE 技術發展

服務機關:交通部中央氣象局

- 姓名職稱:林品芳 薦任技佐
- 派赴國家:美國
- 出國期間: 民國 97 年 8 月 1 日至民國 97 年 10 月 29 日
- 報告日期:民國 97年11月

中美合作天氣監測輔助系統發展-偏極化雷達 QPE 技術發展

摘要

美國劇烈風暴實驗室(National Severe Storm Laboratory; NSSL)對於偏極化 (雙偏振)雷達不論是在原理方面,如資料品質的處理、各資料場於不同天氣系 統所具有的觀測資訊、各資料場之間的相關特性及其所代表之意義等,或是在 應用方面,如對流與層狀降雨區域的辨識、融解層高度及其厚度的判斷、降水 粒子型態的分辨等,皆具相當豐富的知識背景與應用經驗。

此行赴美目的在於利用 SPOL (S-band polarimetric Doppler radar system)偏極化雷達於 SoWMEX (Southwest Monsoon Experiment),又稱 TiMREX (Terrain-influenced Monsoon Rainfall Experiment)實驗計畫期間,對於台灣西南區域所提供的寶貴觀測資料,評估 SPOL 偏極化雷達多參數觀測場於 SoWMEX/TiMREX IOP (intense observation period)期間其定量降雨估計 (Quantitative Precipitation Estimate; QPE)的表現能力。

目次

一、目的	1
二、過程	2
三、心得	3
四、建議事項	10
參考文獻	11
圖表	15
附錄	37

一、目的

由於美國劇烈風暴實驗室(National Severe Storm Laboratory; NSSL)對於偏極化(雙偏振)雷達不論是在原理方面,如資料品質的處理、各資料場於不同天氣系統所具有的觀測資訊、各資料場之間的相關特性及其所代表之意義等,或是在應用方面,如對流與層狀降雨區域的辨識(Baldini and Gorgucci 2006)、融解層高度及其厚度的判斷、降水粒子型態的分辨等,皆具相當豐富的知識背景與經驗,而台灣地區之網連雷達皆屬於都卜勒作業雷達,尙無作業用之偏極化雷達,對於此相關經驗相當欠缺。

此行赴美目的為利用SPOL (S-band polarimetric Doppler radar system)偏極 化雷達的各參數場,如dBZ、K_{DP}、Z_{DR}...等,於NSSL進行SPOL偏極化雷達於 SoWMEX (Southwest Monsoon Experiment),又稱TiMREX (Terrain-influenced Monsoon Rainfall Experiment)實驗計畫期間,對於台灣西南區域所觀測資料,對 其所估計的降雨量與雨量站觀測雨量做一初步的降雨評估。由於台灣地區之都 卜勒(單偏振)雷達網,未來皆將規劃升級爲偏極化雷達,藉由評估過程來了解 偏極化雷達資料的處理細節,對於未來將建立之偏極化雷達網所需之相關知識 及經驗,將有所助益。 二、過程

赴美行程及工作概述說明如下表:

日期	地點與相關工作內容	
97/8/1~97/8/2	台北→舊金山(San Francisco)→達拉斯(Dallas)→奧克拉	
	荷馬市(Oklahoma City)→諾曼(Norman)	
97/8/2~97/10/26	NSSL	
	SPOL偏極化雷達多參數觀測場於定量降雨估計(QPE)的	
	表現能力評估及吸收其相關經驗。	
97/10/27~97/10/28	諾曼→奧克拉荷馬市→達拉斯→舊金山	
97/10/28~97/10/29	舊金山→台北	

此次赴美實習之主要研習項目如下:

- (一) 判斷各觀測資料的可信度;
- (二)初步資料品質控制;
- (三) 各觀測場結合所代表之氣象資訊;
- (四)進行 QPE 之各參數場限制;
- (五)初步了解降水粒子分類原理。

三、心得

台灣地區地處副熱帶,為亞洲地區最顯著之季風區。此一地區暖季豪雨現 象主要包含梅雨季鋒面豪雨天氣系統(5~6月)以及颱風季豪雨天氣系統。梅雨 (東亞夏季西南季風肇始)是台灣春末夏初的主要天氣現象,梅雨鋒雲帶內經常 有組織良好的中尺度對流系統,伴隨顯著中尺度天氣現象,帶來劇烈豪雨,造 成重大災害。因此了解此滯留梅雨鋒、西南季風中可能伴隨的低層噴流和中尺 度對流系統(Mesoscale Convective System; MCS)等天氣系統和台灣區域地形間 的交互作用,實爲刻不容緩之課題。因此今年(2008年)結合各海內外氣象學家, 進行西南氣流實驗計畫,也成爲國際級的示範實驗計畫。

西南氣流觀測與豪雨預測實驗,簡稱西南氣流實驗,SoWMEX,又稱 TiMREX。實驗時間為2008年5月15日至6月30日,實驗地點為南中國海 北部和台灣本島及鄰近海域。台灣地區之氣象領域之學術與作業單位以及美國 NCAR(The National Center of Atmospheric Research)皆希望利用S波段偏極化雷 達SPOL,在台灣進行不穩定大氣條件下,山區降雨定量估計和預報實驗,了解 台灣地形對降雨過程尤其是豪大雨系統之影響。實驗目的期在改進台灣在西南 氣流盛行季節,空間尺度為鄉鎭或集水區,時間尺度為短期(0-12,0-24,0-36hr) 和極短期(0-3,0-6hr)之定量降雨估計和預報(QPE/QPF,Quantitative precipitation estimate and forecast)之能力,有效改善現有防災工作上迫切需求之洪水預測以 及土石流預警的精確度。此行赴美至NSSL重點將著重於評估SPOL偏極化雷達 多參數觀測場於SoWMEX/TiMREX IOP (intense observation period)期間對QPE 的表現能力。

許多研究(Brandes et al. 2001; Brandes et al. 2002; May et al. 1999; Matrosov et al. 2002; Ryzhkov and Zrnic 1996; Ryzhkov et al. 2000; Ryzhkov et al. 2001)已 經提出偏極化雷達的 QPE 技術可改善降雨估計,且其觀測參數場與降水粒子分 布(Drop Size Distribution; DSD)的變動關係,相較於簡單的 Z-R 降雨關係式具有較顯著的相關。直到目前,對於何者爲最佳的雨量估計關係式,以及何種程度 才可視爲具有改善效用,並無一定的看法。亦有研究(Doviak and Zrnic 1993; Bringi and Chandrasekar 2001; Zrnic and Ryzhkov 1999; Vivekanandan et al. 1999; and Straka et al. 2000)指出,偏極化雷達具有較都卜勒雷達較多觀測上的優勢,如改善降雨估計、氣象與非氣象回波的分辨效率,並能對不同的物理過程進行 降水粒子的分類(Hydrometeor Classification),以及反演其 DSDs 等,如此可進 一步了解天氣系統的降水型態。

(一) 偏極化雷達觀測場於 QPE 之應用原理

Ryzhkov et al. (2005) 在JPOLE (Joint Polarization Experiment)中除了評估 NSSL之KOUN偏極化雷達多參數場(Doviak et al. 2000)以及評估其分辨氣象與非 氣象回波的能力外,Ryzhkov et al. (2003a,b)以及Ryzhkov et al. (2005)也分別使用 雨量站及二維雨滴譜儀(2D-video disdrometers; 2DVD)來調校其估計雨量值。由於 修正雨滴粒徑分布的Gamma DSD (Ulbrich and Atlas 1984):

$N(D) = N_0 D^{\mu} exp (-\Lambda D)$

可經由偏極化雷達的水平回波因子 Z_H (radar reflectivity factor at horizontal polarization), 差異反射率 Z_{DR} (differential reflectivity)和比差異相位差 K_{DP} (specific differential phase)與Gamma DSD的關係便可得 $R(Z_H) \times R(K_{DP}) \times R(Z_H, Z_{DR})$ 等不同參數場所得之降雨估計量。 $N_0 (mm^{-\mu-1}m^{-3})$ 為降雨粒子濃度, μ 為DSD無因次型態參數, $\Lambda(mm^{-1})$ 為擬合曲線的斜率項, 而D(mm)為等效粒子直徑 (equivolume diameter), N(D)則為雨滴粒徑分布。由偏極化雷達所反演出來的 DSD與 2DVD所測量的DSD相當近似(Bringi et al. 2002, 2003; Brandes et al. 2004a,b)。

由於利用 Z_H , Z_{DR} 和 K_{DP} 各參數場之間的相關是偏極化雷達較都卜勒雷達所 具的優勢之一(Ryzhkov et al. 2003b), 而 Z_{DR} 定義為水平極化和垂直極化的比値 (Seliga and Bringi 1976),對於降水粒子的扁平率具敏感度,且隨降雨粒子大小 的增加而增加。 Z_{DR} 更是量測降雨粒子直徑中位數的良好參數,應該被運用於估 算降雨關係式中,以求更精確的降雨(Ryzhkov et al. 2003a)。Seliga et al. (1981) 和Gorgucci et al. (1995)已經指出,使用 Z_H 和 Z_{DR} ,也就是 $R(Z_H, Z_{DR})$ 估計的降雨量 較只由 $R(Z_H)$ 估計降雨量來的準確,而個案間的差異也最小(Brandes et al. 2002),主要是因為 $R(Z_H, Z_{DR})$ 所估計的降雨量受降雨粒子大小變動的影響所造成 的誤差較 $R(Z_H)$ 小(Seliga and Bringi 1976; Ulbrich and Atlas 1984)。但 Chandrasekar et al. (1990)測量 Z_{DR} 的隨機誤差也已指出,在有冰雹的環境下,由 於冰雹於下降過程中因爲翻滾,普遍有較小的 Z_{DR} , $R(Z_{DR})$ 估計降雨量會偏低, 但只由 $R(Z_H)$ 估計雨量會造成相當大的雨量,是故 $R(Z_H, Z_{DR})$ 對於估計降雨量的改 善只介於中等至強降雨間。

而 $R(K_{DP})$ 較 $R(Z_H)$ 對DSD變化具有較小的敏感度(Sachidananda and Zrnic 1987),對於冰雹的滾動反應亦不顯著(Balakrishnan and Zrnic 1990; Aydin et al. 1995),由於 K_{DP} 是由差異相位差 Φ_{DP} (differential propagation phase)的微分而來,因此 K_{DP} 相對於 Z_H , K_{DP} 對於雷達回波因調校產生的誤差,脈衝能量因降雨的衰減,幾乎不受影響,對冰雹的存在靈敏度低(Zrnic and Ryzhkov 1996),且比較 雷達估計降雨量與雨量站觀測雨量値,指出 $R(K_{DP})$ 亦不受雷達波束遮蔽效應 (beam blockage)和異常傳播(anomalous propagation; AP)所影響,但 $R(Z_H)$ 卻會因 此而低估降雨量(Ryzhkov and Zrnic 1995a,b; Zrnic and Ryzhkov 1996; Ryzhkov et al. 1997; Vivekanandan et al. 1999; Brandes et al. 2001),所以使用 $R(K_{DP})$ 估計的降雨量亦較由 $R(Z_H)$ 估計降雨量來的準確(Ryzhkov and Zrnic 1996)。因此可結合 K_{DP} 和 Z_{DR} 的優點,當作降雨估計關係式的兩參數來估計降雨(Jameson 1991; Ryzhkov and Zrnic 1995a)。

Ryzhkov et al. (2003a)使用JPOLE期間 2003 年 5/14 的個案顯示,若在中等 雨勢使用 $R(K_{DP}, Z_{DR})$ 的估計降雨關係式可改善降雨估計的偏差量。Ryzhkov and Zrnic (1996)及Brandes et al. (2001)研究指出,若降雨粒子較小時(小雨), $R(K_{DP})$ 降雨估計值會偏向低估。而且小的降雨率或是小的降水粒子對 K_{DP} 而言,可能 會產生相當程度的變化(Ryzhkov and Zrnic 1996)。Ryzhkov et al. (2005)根據DSD 的統計結果,提出降雨強度所適用之降雨估計參數場,由於 $R(K_{DP}, Z_{DR})$ 受DSD 變化及降雨粒子形態及其下降時角度的變化所影響最小,在小的降雨率(< 6 mmh^{-1})因爲 K_{DP} 的雜訊較多,若使用 $R(K_{DP}, Z_{DR})$ 則會降低降雨估計準確度,因此 以 Z_H 代替 K_{DP} 與 Z_{DR} ,即使用 $R(Z_H)$,若是大的降雨率(< 50 mm/hr), Z_{DR} 和 Z_H 都很 容易受冰雹的汙染,因此主要由 $R(K_{DP})$ 來估算降雨率。Bringi et al. (2002)也避免 使用< 0.3° km^{-1} ($R < 20 mmh^{-1}$)的 K_{DP} 進行DSD的反演,Brandes et al. (2002, 2003, 2004a,b)亦証明在小的降雨率時,沒有使用 K_{DP} 的情況下仍與實際量測的DSD具 有良好的相關。

(二) 偏極化雷達 QPE 及其評估方法

1. QPE 方法:

架設於屏東縣新園鄉之SPOL偏極化雷達(雷達參數列於表一),每7.5分鐘 執行1次體積掃描(volume scan),利用其 Z_H (dBZ)、 Z_{DR} 和 K_{DP} 等參數場1度仰角 資料以及使用NEXRAD (National Weather Service's Next Generation Weather Radar)標準Z-R關係式、Sachidananda and Zrnic 1987、Ryzhkov and Zrnic 1996、 Ryzhkov et al. 2003a以及Ryzhkov et al. 2005 利用不同的DSD分布所得之 $R(Z_H)$ 、 $R(K_{DP})$ 以及 $R(Z_H, Z_{DR})$ 分別進行QPE外,並結合各降雨關係式在不同降雨強度上 所具的估計降雨準確度,整合至下列兩組估計降雨關係組(synthetic algorithm) 進行降雨估計:

(1) $R(Z_H)$: $R(mmh^{-1}) = 0.017Z_H^{0.714}$ (The stands $R(K_{DP})$: $R(mmh^{-1}) = 40.56K_{DP}^{0.866}$ (Sachida $R(Z_H, Z_{DR})$: $R(mmh^{-1}) = 0.00683 Z_H^{-3.86} Z_V^{4.86}$ 其中 $Z_{dr} = 10^{0.1Z_{DR}} Z_{DR} = 10\log(Z_H/Z_V)$

(The standard NEXRAD relation) (Sachidananda and Zrnic 1987)

Ryzhkov and Zrnic (1996)指出,若天氣系統尺度小於計算*K*_{DP}時所使用之單 位距離,會造成*K*_{DP}負値的產生,而在連續的正值*K*_{DP},亦常具有負值*K*_{DP}鑲嵌 其中(Ryzhkov and Zrnic 1998a),以及在低降雨率時,雜訊亦會造成*K*_{DP}的負值, 為了降低由*K*_{DP}所估算之累積降雨量的偏差,Ryzhkov and Zrnic (1996)認為在計 算降雨估計時,因考慮*K*_{DP}正負符號,因此將上式*R*(*K*_{DP})修正為:

 $R(K_{DP})$: $R(mmh^{-1})=40.56|K_{DP}|^{0.866}$ sign(K_{DP}) (Ryzhkov and Zrnic 1996) 估計降雨關係組(synthetic algorithm): Scheme I (NCAR)

$$R(Z_H) \le 20 \ mmh^{-1}$$
: $R(mmh^{-1}) = R(Z_H)$ (1-1)

$$20 \ mmh^{-1} < R(Z_H) \le 70 \ mmh^{-1} : \ R(mmh^{-1}) = R(Z_H, Z_{DR})$$
(1-2)

$$R(Z_H) > 70 \ mmh^{-1}$$
: $R(mmh^{-1}) = R(K_{DP})$ (1-3)

(2)
$$R(Z_H)$$
: $R(mmh^{-1}) = 0.017Z_H^{0.714}$ (The standard NEXRAD relation)

$$R'(K_{DP})$$
: $R(mmh^{-1}) = 44.0 |K_{DP}|^{0.822} sign(K_{DP})$ (Ryzhkov et al. 2003a)

 $R(Z_{H}, Z_{DR}) : R(mmh^{-1}) = 0.0142 Z_{H}^{0.770} Z_{dr}^{-1.67}$ (Ryzhkov et al. 2003a)

估計降雨關係組(synthetic algorithm): Scheme II (NSSL, Ryzhkov et al. 2005)

$$R(Z_H) \le 6 \ mmh^{-1}$$
: $R(mmh^{-1}) = R(Z_H)/f_1(Z_{DR})$ (2-1)

$$6 mmh^{-1} < R(Z_H) \le 50 mmh^{-1} : R(mmh^{-1}) = R'(K_{DP})/f_2(Z_{DR})$$
(2-2)

$$R(Z_H) > 50 \ mmh^{-1}$$
: $R(mmh^{-1}) = R'(K_{DP})$ (2-3)

其中
$$f_1(Z_{DR}) = 0.4 + 5.0 | Z_{dr} - 1|^{1.3}$$

 $f_2(Z_{DR}) = 0.4 + 3.5 | Z_{dr} - 1|^{1.7}$ (Fulton et al. 1999)

Ryzhkov et al. (2003a)已驗證區域 QPE 較單點 QPE 準確度要高,因此選取 位於測站方圓 1 km 內的 SPOL 偏極化雷達資料經過平均再進行 QPE,進而進 行其準確度評估。

2. 評估 QPE 方法:

進行評估之雨量站以台灣西南區域為主,挑選雨量站依據:

(1) 與 SPOL 偏極化雷達之距離不超過 80 km;

(2) 雨量站海拔高度(above mean sea level)低於 1 km 者。

共選取 57 個測站(圖 1)進行 QPE 評估,將其觀測雨量視為真値(ground truth), 評估 SPOL 偏極化雷達 QPE 之準確度。

(三) 偏極化雷達初步 QPE 結果及其評估

於今(2008)年台灣 SoWMEX/TiMREX 9 次的 IOP (其天氣特徵列於表 2)期 間,選取 5 月 29 日 ~ 5 月 31 日(IOP2~IOP3, case A)、6 月 2 日 ~ 6 月 5 日(IOP4 ~ IOP6, case B)、6 月 14~6 月 16 日(IOP8, case C)等較強降水事件,於此 3 個 個案期間,降雨區域分布全台。case A 發生期間,主要是地形、梅雨鋒面及西 南氣流間的交互作用,造成局部性的對流系統,降雨極大區域分布於各地,尤 以台中、嘉義、屏東 3 縣市之斜坡山區為最,相對較大降雨量値為 250 mm (圖 2a)。case B 發生期間除了地形、梅雨鋒面及西南氣流間的交互作用外,亦有 850 hPa 風切線、中尺度低壓(meso-low)與中尺度渦旋(mesoscale vortex)等動力條件 的 MCS, 苗栗以南降雨量達 100 mm,高屏地區的降雨量則是達 300 mm (圖 2b)。case C發生期間,源於中國沿海移動緩慢的南北向颮線(Squall line)約於6/14 0130Z 到達台灣地區後(圖略),轉換為東西方向的準靜止(quasi-stationary)狀態, 一連串的對流胞則沿著此東西向的颮線向東移進台灣區域,使嘉義以南區域出 現高於 200 mm 的累積雨量,高屏區域更是出現 500 mm 以上之雨量值(圖 2c)。

圖 3 為 case A 中以 5/29 0100Z 為 例 之 1.5° 仰 角 觀測回波 (圖 3a) 及其 Z_H、 Z_{DR}、 *K*_{DP}觀測場分別使用(1-1)、(1-2)、(1-3)式所得之*R*(*Z*_H)、*R*(*Z*_H,*Z*_{DR})、*R*(*K*_{DP})降雨 估計場(圖 3b~d),比較雨量站觀測雨量(圖中數字),可見R(Z_H)及R(K_{DP})約於小 於 20 mmh^{-1} 之降雨區域具有與雨量站觀測雨量相近值(圖 3b、d),但於大於 20 mmh^{-1} 之降雨區域, $R(Z_H)$ 及 $R(K_{DP})$ 則明顯低估, 且 $R(K_{DP})$ 較 $R(Z_H)$ 相對於觀測回 波場而言有較相近的分布。而 $R(Z_H, Z_{DR})$ 相對於 $R(Z_H)$ 及 $R(K_{DP})$,整體而言,明顯 有加強降雨估計值的趨勢,但在較弱的降雨區域則差異不大(圖 3c)。結合 $R(Z_H)$ 、 $R(Z_H, Z_{DR})$ 、 $R(K_{DP})$ 三者降雨關係式之Scheme I降雨關係組所得之降雨估 計場R(HYB)(圖 3e),其具有較 $R(Z_H)$ 及 $R(K_{DP})$ 較大的降雨估計值,但較 $R(Z_H, Z_{DR})$ 則具有較小的降雨估計值,可見R(HYB)可彌補R(Z_H)及R(K_{DP})的低估以及減緩 R(Z_H,Z_{DR})的高估,但由此個案期間R(HYB)與所選取 57 個雨量站觀測時雨量 (Gauge)之散佈圖可見R(HYB)整體而言偏高估(圖 3f)。圖 4 則是於case A中分別 使用Scheme II之(2-1)、(2-2)、(2-3)式各降雨關係式所得之降雨估計場, R(Z_H)/f₁(Z_{DR})與R'(K_{DP})所估計的降雨估計值較R'(K_{DP})/f₂(Z_{DR})來得小(圖 4a~c),結 $cheve area R(Z_H)/f_1(Z_{DR}) \land R'(K_{DP})/f_2(Z_{DR}) \land R'(K_{DP})$ 三者降雨關係式之Scheme II所得之降 雨估計場R'(HYB)(圖 4d),可見其降雨估計強度介於 $R(Z_H)/f_1(Z_{DR})$ 與 $R'(K_{DP})$ 的較 弱估計雨量與R'(KDP)/f2(ZDR)的較強估計雨量間。而R'(HYB)與Gauge在此個案期 間與R(HYB)不論在相關係數上或是高低估的偏差,其所表現結果相當(圖 3f與 圖 4e)。

圖 5 與圖 6 則是case B期間以 6/2 0700Z為例之 1.1°仰角觀測回波及其 Z_H 、 Z_{DR} 、 K_{DP} 使用Scheme I與Scheme II之降雨估計式所得之各降雨估計場。圖 5 中, 使用NEXRAD標準降雨關係式之 $R(Z_H)$ 及 $R(K_{DP})$ 分別較雨量站觀測雨量明顯低 估(圖 5b、d),而 $R(Z_H, Z_{DR})$ 所估計的降雨量分布(圖 5c)與 Z_H 之分布(圖 5a)較近似, 且具有較 $R(Z_H)$ 及 $R(K_{DP})$ 較大的降雨估計雨量。由結合 $R(Z_H) \times R(Z_H, Z_{DR}) \times R(K_{DP})$ 三者降雨關係式之Scheme I所得之降雨估計場R(HYB),可見其與 $R(Z_H, Z_{DR}) \sim R(K_{DP})$ 三者降雨關係式之Scheme I所得之降雨估計場R(HYB),可見其與 $R(Z_H, Z_{DR})$ 之大 小與分布相當(圖 5c、e),主要可能因為 $R(Z_H)$ 所得之值主要介於Scheme I中的使 $H(1-2)式之 20 mmh^{-1} < R(Z_H) \le 70 mmh^{-1}間。而由<math>R(HYB)$ 與Gauge之散佈圖亦於 此個案期間仍偏高估(圖 5f)。圖 6 則為case B分別 使用Scheme II之(2-1)、(2-2)、 (2-3)式各降雨關係式所得之降雨估計場(分布),於此所選取時間, $R(Z_H)/f_1(Z_{DR})$ 與 $R'(K_{DP})$ 所估計的降雨估計值相同於case A,較 $R'(K_{DP})/f_2(Z_{DR})$ 來得小(圖 6a~c),結合 $R(Z_H)/f_1(Z_{DR}) \times R'(K_{DP})/f_2(Z_{DR}) \otimes R'(K_{DP})$ 的估計雨量強度與 $R'(K_{DP})/f_2(Z_{DR})$ 的估計雨量強度間,雖由此個案期間 其與Gauge相較下仍偏高估,但其偏差量不大(圖 6e)。由Scheme I的R(HYB)與 Scheme II的R'(HYB)與Gauge之散佈圖顯示兩者在此個案期間的表現程度相當 (圖 5f與圖 6e)。

圖 7 則為 case C期間以 6/14 1200Z 為 例之 1.1° 仰角觀測回波及其 Z_H 、 Z_{DR} 、 K_{DP} 使用Scheme I與Scheme II之降雨估計式所得之各降雨估計場。同樣的, $R(Z_H)$ 及 $R(K_{DP})$ 分別較*雨量*站觀測雨量明顯低估(圖 7b、d), 尤以 $R(Z_H)$ 偏低估量較大。 而 $R(Z_H, Z_{DR})$ 相對於 $R(Z_H)$ 及 $R(K_{DR})$,在此時間仍是明顯加強降雨估計值,在>20 mmh⁻¹之降雨區域,其值大致上較Gauge值為高(圖 7c)。而由Scheme I所得之降 雨估計場R(HYB)(圖 7e),其具有較 $R(Z_H)$ 及 $R(K_{DP})$ 較大的降雨估計值,及較 $R(Z_H, Z_{DR})$ 有較小的降雨估計值, 彌補了 $R(Z_H)$ 及 $R(K_{DP})$ 的低估以及減緩 $R(Z_H, Z_{DR})$ 的高估,但在此個案期間,R(HYB)與Gauge之散佈圖可知其仍偏高估(圖 7f)。 圖 8 則為case C分別使用Scheme II之(2-1)、(2-2)、(2-3)式各降雨關係式所得之 降雨估計場,其估計降雨量仍是 $R'(K_{DP})/f_2(Z_{DR})$ 較 $R(Z_H)/f_1(Z_{DR})$ 與 $R'(K_{DP})$ 的估計 雨量強度為大(圖 8a~c),但由Scheme II所得之降雨估計場R'(HYB)(圖 8d),其結 果與R(HYB)(圖 7e)相當, 彌補了 $R(Z_H)/f_1(Z_{DR})$ 與 $R'(K_{DP})$ 的低估以及減緩 R'(K_{DP})/f₂(Z_{DR})的高估。而於case C期間,除了Scheme I的R(HYB)與Scheme II的 R'(HYB)與Gauge之散佈圖顯示於此個案期間皆具有高達相關係數≥0.90的相關 係數外,其Scheme II的R'(HYB)的整體降雨估計可達不具明顯低估與高估的良 好表現。

在Scheme I中,較小降雨率(light rain rate)、中等降雨率(moderate rain rate) 及強降雨率(heavy rain rate)分別由 $R(Z_H) \cdot R(Z_H, Z_{DR}) \cdot R(K_{DP})$ 來估計降雨,而在 Scheme II中,則分別由 $R(Z_H)/f_1(Z_{DR}) \cdot R'(K_{DP})/f_2(Z_{DR}) \cdot R'(K_{DP})$ 來估計降雨。用 來估計較小降雨的 $R(Z_H)$ 與 $R(Z_H)/f_1(Z_{DR})$,於case A、case B及case C所挑選案例 中,相較於Gauge而言大致上偏低估,主要是因為NEXRAD的標準降雨估計關 係式是針對溫帶地區之層狀降雨所設計,對於地處副熱帶的台灣地區,加上其 複雜的地形效應,使得DSD多偏於具較大的等效粒子直徑的降水粒子,造成其 降雨的低估。對於估計較大降雨的R(KDP)及R'(KDP),兩者在三個個案中的差異 性不大,其所估計降雨分布相當,可能是因為R(KDP)關係式主要是根據 Marshall-Palmer之假設所模擬的DSD而來(Sachidananda and Zrnic 1987),而 R'(KDP)則使用NSSL所屬之偏極化KOUN雷達觀測及假設equilibrium shapes DSD經 2DVD校驗所得(Ryzhkov et al. 2003a),主要皆針對層狀降雨所觀測,因 此所呈現的降雨估計結果相當。而用來估計中等降雨率的R(Z_H,Z_{DR})及 R'(K_{DP})/f₂(Z_{DR}),其所估計的降雨量在此3個個案中,明顯較估計較小降雨率與 估計較大降雨率的降雨估計式所估計雨量明顯增加,主要是因為經過 f2(ZDR)(Fulton et al. 1999)之調校而提高其降雨估計值之結果。

整體而言,R(HYB)與R'(HYB)彌補了估計較小降雨率的 $R(Z_H) \cdot R(Z_H)/f_1(Z_{DR})$ 和估計較大降雨率的 $R(K_{DP}) \cdot R'(K_{DP})$ 的偏低估情況,且減緩了估計中等降雨率的 $R(Z_H, Z_{DR}) \cdot R'(K_{DP})/f_2(Z_{DR})$ 的偏高估情況。由SPOL偏極化雷達所使用的兩組

降雨關係組顯示,於所選取的 3 個個案中,Scheme I的*R(HYB)*與Scheme II的 *R'(HYB)*兩者不論是在相關係數上或是高低估的偏差,其所表現結果相當,但在 case C期間則具有較好的表現,尤以Scheme II的*R'(HYB)*較佳。*R(HYB)*所適用之 降雨率範圍 20 $mmh^{-1} < R(Z_H) \le 70 mmh^{-1}$ 相對於 43 dBZ < dBZ ≤ 50.5 dBZ之回波 值間;而*R'(HYB)*所適用之降雨率範圍 6 $mmh^{-1} < R(Z_H) \le 50 mmh^{-1}$ 則是相對於 35.5 dBZ < dBZ ≤ 48.5 dBZ之回波值間,可推測在台灣地區,大部分的降雨多由 中等降雨所貢獻,且兩者降雨率所適用範圍上下限的差異於台灣區域所造成的 降雨差異不大。

四、建議事項

在此偏極化雷達所使用的降雨估計方法,主要是使用針對美國溫帶地區觀測 及校驗所發展之*R(K_{DP})、R(Z_H,Z_{DR})*關係式,並非針對地處副熱帶的台灣地區所設 計,因此提供以下4點建議,作為本局未來發展偏極化雷達定量降雨估計技術之 參考。

- (一) 利用於SoWMEX/TiMREX期間架設於屏東縣大樹鄉的 2DVD觀測資料,配合Zhang et al.(2001)的方法可得Gamma DSD (Ulbrich and Atlas 1984)的 3 個控制參數: N₀、μ、Λ,並擬合與偏極化雷達參數Z_H、Z_{DR}、K_{DP}相關的μ-Λ關係式(Seliga and Bringi 1976, Bringi and Chandrasekar 2001),並利用Brandes et al. (2002)的雨軸比在Gamma DSD的假設下,可發展較適用於台灣區域的不同參數所得之降雨估計量R(K_{DP})、R(Z_H,Z_{DR})關係式。
- (二)利用偏極化雷達各參數場特性,針對位於雷達波束受部分遮蔽效應(partial beam blockage; PBB)區域之測站進行定量降雨估計(QPE),如附錄 A。
- (三)結合偏極化雷達多參數場於對流與層狀降雨區域所顯示的不同特性,進行 降雨型態的辨識(Baldini and Gorgucci 2006)以及融解層高度及其厚度的判 斷(Ryzhkov and Zrnic 1998b),可降低因為不同降雨型態以及融解層的存在 所形成的較高回波値而造成 QPE 的誤差(附錄 B)。
- (四)不同的降水粒子對於降水量有不同的貢獻,若可根據偏極化雷達多參數場對於降水粒子型態分辨(Straka et al. 2000)的優勢,對於不同的降水粒子給定的不同降雨之權重(Heinselman and Ryzhkov 2006),對於QPE準確度的提升將有相當程度的幫助(附錄C)。

利用於SoWMEX/TiMREX實驗計畫期間架設於屏東縣新園鄉的SPOL偏極 化雷達所提供的寶貴資訊,將可進一步了解處於副熱帶區域的台灣地區其不同的 降水型態的分布及特性,相信對於具複雜地形以及各季節不同天氣系統與地形間 的交互作用所造成的不同降水粒子分布做更深入探討,以及藉由此評估過程來了 解偏極化雷達資料的處理細節,將可作爲對於未來將建立之偏極化雷達網所需之 相關知識及經驗的應用基礎。

- Aydin, K., V. N. Bringi, and L. Liu, 1995: Rain-rate estimation in the presence of hail using S-band specific differential phase and other radar parameters. J. Appl. Meteor., 34, 404-410.
- Balakrishnan, N., and D. S. Zrnic, 1990: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565-583.
- Baldini, L. and E. Gorgucci, 2006: Identification of the melting layer through dual-polarization radar measurements at vertical incidence. *J. Atmos. Oceanic Technol.*, **23**, 829-839.
- Brandes, E. A., A. V. Ryzhkov, D. S. Zrnic, 2001: An evaluation of radar rainfall estimates from specific differential phase. *J. Atmos. Oceanic Tech.*, **18**, 363-375.
- Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. *J. Appl. Meteor.*, **41**, 674-685.
- Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution based polarimetric radar rainfall estimator. *J. Appl. Meteor.* **42**, 652-660.
- Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004a: Drop-size distribution retrieval with polarimetric radar: model and application. *J. Appl. Meteor.*, **43**, 461-475.
- Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004b: Comparison of polarimetric radar drop size distribution retrieval algorithms. *J. Atmos. Oceanic Technol*, **21**, 584-598.
- Bringi, V. N., G. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a Gamma raindrop size distribution model from polarimetric radar data: application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol. 19, 633-645.
- Bringi, V. N., and V. Chandrasekar, 2001: *Polarimetric Doppler Weather Radar: Principles and Applications*. Cambridge University Press, 636 pp.
- Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. Randeu, and M. Scoenhuber, 2003: Raindrop size distribution in different climate regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354-365.
- Chandrasekar, V., V. N. Bringi, N. Balakrishnan, and D. S. Zrnic, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III:

Specific differential phase. J. Atmos. Oceanic Technol., 7, 621-629.

- Doviak, R. J., and D. S. Zrnic, 1993: *Doppler Radar and Weather Observations*. 2d ed. Academic Press, 562 pp.
- Doviak, R. J., V. Bringi, A. V. Ryzhkov, A. Zahrai, and D. S. Zrnic, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. *J. Atmos. Oceanic Technol.*, **17**, 257-278.
- Gorgucci, E., V. Chandrasekar, and G. Scarchilli, 1995: Radar and surface measurement of rainfall during CaPE: 26 July 1991 case study. J. Appl. Meteor., 34, 1570-1577.
- Fulton, R., A. V. Ryzhkov, and D. S. Zrnic, 1999: Areal rainfall estimation using conventional and polarimetric radar methods. Preprints, 29th International Conference on Radar Meteorology, Montreal, Canada, Amer. Meteor. Soc., 293-296.
- Heinselman, P. L. and A. V. Ryzhkov, 2006: Validation of Polarimetric Hail Detection. *Wea. Forecasting*, **21**, 839-850.
- Jameson, A., 1991: A comparison of microwave techniques for measuring rainfall. *J. Appl. Meteor.*, **30**, 32-54.
- Matrosov, S. Y., K. A. Clark, B. E. Martner, A. Tokay, 2002: Measurements of rainfall with polarimetric X-band radar. *J. Appl. Meteor.*, **41**, 941-952.
- May, P., T. D. Keenan, D. S. Zrnic, L. Carey, and S. Rutledge, 1999: Polarimetric radar measurements of tropical rain at 5-cm wavelength. *J. Appl. Meteor.*, **38**, 750-765.
- Ryzhkov, A. V., and D. S. Zrnic, 1995a: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249-256.
- Ryzhkov, A. V., and D. S. Zrnic, 1995b: Precipitation and attenuation measurements at 10-cm wavelength. *J. Appl. Meteor.*, **34**, 2121-2134.
- Ryzhkov, A. V., and D. S. Zrnic, 1996: Assessment of rainfall measurement that uses specific differential phase. *J. Appl. Meteor.*, **35**, 2080-2090.
- Ryzhkov, A. V., and D. S. Zrnic, 1998a: Beamwidth effects on the differential phase measurements of rain. *J. Atmos. Oceanic Technol.*, **15**, 624-634.
- Ryzhkov, A. V., and D. S. Zrnic, 1998b: Discrimination between Rain and Snow with a Polarimetric Radar. *J. Appl. Meteor.*, **37**, 1228-1240.
- Ryzhkov, A. V., and D. S. Zrnic, and D. Atlas, 1997: Polarimetrically tuned R(Z) relations and comparison of radar rainfall methods. J. Appl. Meteor., 36,

340-349.

- Ryzhkov, A. V., D. S. Zrnic, and R. Fulton, 2000: Areal Rainfall Estimates Using Differential Phase. J. Appl. Meteor., **39**, 263-268.
- Ryzhkov, A. V., T. J. Schuur, and D. S. Zrnic, 2001: Testing a polarimetric rainfall algorithm and comparison with a dense network of rain gauges. *Preprints, Fifth International Symposium on Hydrological Applications of Weather Radar.*, Kyoto, Japan, 159-164.
- Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2003a: Rainfall measurements with the polarimetric WSR-88D radar. National Severe Storms Laboratory Rep., 98 pp.
- Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2003b: Rainfall estimation with a polarimetric prototype of the operational WSR-88D radar. Preprints, *31st Int. Conf. on Radar Meteorology*, Seattle, WA, Amer. Meteor. Soc., 208-211.
- Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnic , 2005: The Joint Polarization Experiment Polarimetric Rainfall Measurements and Hydrometeor Classification. *Bull. Amer. Meteor. Soc.*, 86, 809-824.
- Sachidananda, M., and D. S. Zrnic, 1987: Rain rate estimates from differential polarization measurements. *J. Atmos. Oceanic Technol.*, **4**, 588-598.
- Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69-76.
- Seliga, T. A., V. N. Bringi, and H. H. Al-Khatib, 1981: A preliminary study of comparative measurements of rainfall rate using the differential reflectivity radar technique and a raingage network. J. Appl. Meteor., 20, 1362-1368.
- Straka, J. M., D. S. Zrnic, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using multiparameter radar data. Synthesis of relations. J. Appl. Meteor., 39, 1341-1372.
- Ulbrich, C. W., and D. Atlas, 1984: Assessment of the contribution of differential polarization to improved rainfall measurements. *Radio Sci.*, **19**, 49-57.
- Vivekanandan, J., D. N. Yates, and E. A. Brandes, 1999: The Influence of Terrain on Rainfall Estimates from Radar Reflectivity and Specific Propagation Phase Observations. J. Atmos. Oceanic Technol., 16, 837-845.
- Zhang, G., J. Vivekanandan, and E. A. Brandes, 2001: A method for estimating

rainrate and drop size distribution from polarimetric radar measurements. *IEEE Trans. Geosci. Remote Sens.*, **39**, 830-841.

- Zrnic, D. S., and A. V. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454-464.
- Zrnic, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. *Bull. Amer. Meteor. Soc.*, **80**, 389-406.

圖表

表1 SPOL 偏極化雷達參數表。

S-Band Polarization Radar (S-Pol) Characteristics				
Transmitter	2.7 2.9 GHz			
Pulse width	0.3 1.4 µsec-tapered			
PRF	0 1300 Hz			
Peak power	>1 Mw			
Staggered pulse	Yes			
Random phase jitter for 2nd trip supression	Yes			
Interference	Meets radio frequency management Subsection 5.2.3, Criteria C			
Receivers (2)	H & V respectively			
Noise power	-115.5 dBm			
Radar Noise figure	2.9 dB			
Dynamic range	90 dB			
Bandwidth	0.738 MHz			
Digital IF	Linear floating point processing			
I-Q image rejection	50 dB -15 dBZ/-52 dBZ at -6 dB SNR			
Minimum detectable dBZ				
at 50km/1km				
Polarization switching	H-V alternating or H only			
Mechanical switch isolation	44.5 dB including wave guide loss			
Ferrite switch isolation	8.5 m (28 ft.)			
Beamwidth	0.91 degrees			
First sidelobe	better than -30 dB			
Isolation (ICPR)	better than -35 dB			
Scan rate	Up to 18°/s each axis, 30°/s with pulley change			
Wind limit for operation	30 m/s / 60 m/s (no radome)			
Data system	NCAR designed VME system (VITAQ)			
Number of range gates	4000			
Gate spacing	37.5 1000m			
Number of samples	16 1000			
Clutter filter	Single polarization only, 50 dB			
Times series (I/Q) capability	Yes			
Real time scientific display	NCAR Zebra			
Recorded variables	$P_{HH}, P_{VV}, V, W, R(1)_{HV}, R(1)_{VH} , R(2) , Phi_{DP}, Pho_{HV}, NCP, Z_{H},$			
	Z _{DR} , LDR, K _{dp}			
Recording medium	Exabyte, Dorade format			

表 2	SoWMEX/TiMREX IOP 期間之主要天氣特徵。
-----	------------------------------

SoWMEX/TiMREX IOP weather summary :				
IOP#	Date	Weather Summary		
1	06Z May 19 $\sim 00Z$ May 22	a) Frontal circulationb) Upstream environment for orographic convection		
2	06Z May 27 ~ 21Z May 29	a) Southwest flow interacting with the terrainb) Upstream condition for mountain convectionc) Lee side vortex/shear zone		
3	21Z May 29 ~ 12Z May 31	a) Orographic/island effects on the Mei-Yu/LLJ system and the associated convection during frontal passage.b) Mesoscale environment for heavy precipitation		
4	21Z June 1 ~15Z June 3	a) Mesoscale convective systems over the strait and the SCSb) Frontal system over the central Taiwan straitc) Mesoscale environment for heavy precipitation		
5	18Z June 3 ~ 12Z June 4	 a) Mesoscale convective systems b) Quasi-stationary front c) Mesoscale convective vortex 		
6	18Z June 4 ~ 12Z June 6	a) Mesoscale convective systemsb) Quasi-stationary frontc) Mesoscale convective vortex		
7	00Z June 12 ~ 12Z June 13	a) Convection initiationb) Orographic convection		
8	00Z June 14 ~ 12Z June 17	a) Southwesterly flow interacting with the terrainb) Upstream condition for mountain convection, low level jetc) Mesoscale convective systemsd) Mesoscale convective vortex		
9	06Z June 23 ~ 12Z 26 June	a) Typhoon Fengseng track uncertaintyb) Typhoon induced southwesterly flow and related heavy rain systems		

SoWMEX/TiMREX IOP weather summary :

圖 1 星號為台灣區域所有雨量站分佈,紅色星號為所挑選雨量站,綠色+為 RCWF、RCHL、 RCCG、RCKT及 SPOL 位置。

圖 2 2008 年,分別於 (a) case A; (b) case B 以及(c) case C 期間之累積降雨分布。

17

續圖 2

圖 3 2008 年 5 月 29 日 0100Z之(a)以SPOL(+)為中心,半徑 150 公里之回波觀測範圍;(b)使用(1-1)式之R(Z_H);(c)使用(1-2)式之R(Z_H,Z_{DR});(d)使用(1-3)式之R(K_{DP});(e)使用NCAR之降雨估計組R(HYB) (Scheme I)及(f)2008 年case A期間每小時R(HYB) (Scheme I)估計雨量與雨量站觀測雨量分布圖。(b)~(e)為 80 公里觀測範圍,+之數字為雨量站雨量,****為dummy值。

EI E2 5 10 11 20 30 40 50 80 10 150 200 250 SPOL KDP QPE (mm) 1:00Z 29-MAY-08

20

續圖 3

續圖 3

圖 4 2008 年 5 月 29 日 0100Z之(a)使用(2-1)式之R(Z_H)/f₁(Z_{DR}); (b)使用(2-2)式之R'(K_{DP})/f₂(Z_{DR});
 (c)使用(2-3)式之R'(K_{DP}); (d)使用Ryzhkov et al. (2005)之降雨估計組R'(HYB) (Scheme II)
 及(e)2008 年case B期間每小時R'(HYB) (Scheme II)估計雨量與雨量站觀測雨量分布圖。

續圖 4

續圖 4

SPOL dBZ PPI 1.1° (dBZ) 7:00Z 2-JUN-08

圖 5 同圖 3,但(a)~(e)為 2008 年 6 月 2 日 0700Z,(f)為 2008 年 case B 期間每小時 R(HYB) (Scheme I)估計雨量與雨量站觀測雨量分布圖。

續圖 5

續圖 5

圖 6 同圖 4,但(a)~(d)為 2008 年 6 月 2 日 0700Z,(e)為 2008 年 case B 期間每小時 R'(HYB) (Scheme II)估計雨量與雨量站觀測雨量分布圖。

通過6

續圖 6

SPOL dBZ PPI 1.1° (dBZ) 12:00Z 14-JUN-08

圖 7 同圖 3,但(a)~(e)為 2008 年 6 月 14 日 1200Z,(f)為 2008 年 case C 期間每小時 R(HYB) (Scheme I)估計雨量與雨量站觀測雨量分布圖。

續圖 7

續圖 7

圖 8 同圖 4,但(a)~(d)為 2008 年 6 月 14 日 1200Z,(e)為 2008 年 case C 期間每小時 R'(HYB) (Scheme II)估計雨量與雨量站觀測雨量分布圖。

續圖 8

附錄 A: Polarimetric Estimation of Rain in the Presence of Partial Beam Blockage (PBB)

- 1. Impact of PBB:
 - 1) Z is negatively biased
 - 2) Z_{DR} might be biased (mainly in the presence of semitransparent targets nearby, such as trees, etc.)
 - 3) K_{DP} is not biased
 - 4) ρ_{hv} is not biased if SNR remains high
 - 5) Statistical errors in the estimates of all radar variables increase due to decrease in SNR
- 2. Identify rain gages in the areas of partial beam blockage. How many of them are there? At what distances from the radar?
- 3. For each "blocked" rain gage, estimate degrees of blockage (in %) at all antenna elevations up to maximal partially blocked elevation.
- 4. For each gage location, compute the following variables at every radar scan and every elevation up to maximal partially blocked elevation.
 - 1) R(Z) averaged using 5 gates centered over the gage location and two closest azimuths separated by 1° (10 gates altogether). Average R(Z) rather than Z! Use formula

$$R(Z) = 1.710^{-2} Z^{0.714}$$

2) $R(K_{DP})$ averaged over the same area. Average $R(K_{DP})$ rather than K_{DP} ! Retain the sign of K_{DP} ! Use formula

$$R(K_{DP}) = 44.0 |K_{DP}|^{0.822} sign(K_{DP})$$

3) Average Z_{DR} .

4) Average ρ_{hv}

5) Average total differential phase Φ_{DP}

- 5. For each storm, prepare the following ASCII arrays.
 - 1) Time vector containing time of each scan (nt values)
 - 2) 2D array containing information about degrees of blockage at *ne* antenna elevations and range for all gages. The dimension of the array is $ne+1 \ge ng$ (number of gages).
 - 3) For each of ne antenna elevations: 2D arrays of R(Z), $R(K_{DP})$, Z_{DR} , ρ_{hv} , and Φ_{DP} . The dimensions of each array are *nt* (time) x *ng* (number of gages)
 - 4) Hourly rain accumulations measured by each gage $(nh \ x \ ng)$, where nh is a number of hours.

附錄 B: Polarimetric Detection of the Bright Band (BB)

附圖 1 NSSL所屬之KOUN雷達於 2003 年 6 月 4 日 4.5 度仰角之(a) Z; (b) Z_{DR}; (c) Hydrometeor Classification及(d) ρ_{hν}各觀測場於BB所顯示之特性。

由附圖 1 所示,由Z, Z_{DR}, ρ_{hv}之觀測場及其經由模糊邏輯算則(Fuzzy Logic) 所判斷出之降水粒子分類顯示,若Z值明顯增大(附圖 1a)、Z_{DR}值具環狀顯著增加 (附圖 1b)、ρ_{hv}具環狀明顯降低(附圖 1d)以及降水粒子判斷為濕雪(Wet Snow, WS, 附圖 1c),即可初步判斷為BB。

附錄 C: Polarimetric Classification of Radar Echoes at S Band

Classes and variables:

The suggested classification algorithm distinguishes between 10 classes of radar echo:

- 1) ground clutter / anomalous propagation (GC/AP),
- 2) biological scatterers (BS),
- 3) dry aggregated snow (DS),
- 4) wet snow (WS),
- 5) crystals of different orientation (CR),
- 6) graupel (GR),
- 7) big drops (BD),
- 8) light and moderate rain (RA),
- 9) heavy rain (HR), and
- 10) rain / hail mixture (RH).

The algorithm utilizes six radar variables: radar reflectivity at horizontal polarization Z_H , differential reflectivity Z_{DR} , cross-correlation coefficient ρ_{hv} , specific differential phase K_{DP} , and the texture parameters of radar reflectivity SD(Z) and differential phase SD(Φ_{DP}). These six variables will be directly used in a fuzzy logic classification scheme. Additional Doppler variable, mean Doppler velocity V, is utilized for discrimination between hail and ground clutter / AP, although it is not included in the set of input variables for the fuzzy logic classifier.

It is more convenient to use specific differential phase K_{DP} in logarithmic scale rather than in linear scale. Hence, instead of raw K_{DP} (measured in deg/km), we introduce the parameter LKdp which is determined as follows:

$LKdp = 10log(K_{DP})$	if	$K_{\rm DP} > 10^{-3} {\rm deg/km}$
LKdp = -40.	if	$K_{\rm DP} < 10^{-3} \rm deg/km$