Multifunctional Microstructured Reactors as Fuel Processor Components for Mobile Fuel Cell Systems

Dr. Gunther Kolb Head of Energy Technology and Catalysis Department Chemical Process Technology Institut für Mikrotechnik Mainz GmbH

<u>Adress:</u> Dr. Gunther Kolb, Institut für Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, 55129 Mainz, Germany Email: kolb@imm-mainz.de Tel: +49 6131 990341

IMM- Centre of Excellence in Microtechnology

Main Fields of R&D work: Focus on Chemical Process Technology and <u>Microfluidics</u>, Micro Precision Engineering Thin Film Technology

Energy echnology and: Catalysis Department (15 people) Development of Complete Micro-structured Fuel Processors (Reactor Design & Construction, Development of Catalyst Coatings, Catalyst / Reactor / System Testing), Liquid hydrogen technology

Motivation for the Application of Microtechnology in Fuel Cells / Fuel Processors

- Improved heat and mass transfer
- Catalyst coating techniques similar to automotive exhaust clean-up
- Low pressure drop (laminar flow regime)
- Systemintegration integrated heat-exchanger reactor design
- Compactness miniaturised heat-exchangers and evaporators
- Improvement of system dynamics fast start-up
- Safety issues (microchannels act as flame arresters)

Kolb G., Hessel V, Review	Hessel V., Löwe H., Müller, A., Kolb G., 2005
Chem. Eng. J. 98, 1-38 (2004)	'Chemical Micro Process Engineering-
	Processing, Applications and Plants', Wiley, Weinheim
	p.281 ff.

The Three Different Types of Reforming – Example Octane

Octane steam reforming (705°C):

 $C_8H_{18} + 8 H_2O \rightarrow 17 H_2 + 8 CO \Delta H_{978} = + 1355 kJ/mol$

Autothermal (= Oxydative Steam) Reforming of Octane (705°C): $3 C_8 H_{18} + 8 O_2 + 8 H_2 O \rightarrow 35 H_2 + 24 CO \Delta H_{978} \approx + 124 kJ/mol$

Partial Oxidation of Octane (705°C) $C_8H_{18} + 4 O_2 \rightarrow 9 H_2 + 8 CO \Delta H_{978} \approx -615 \text{ kJ/mol}$

Side Reactions of Reforming

Water-gas Shift (705°C)

CO+ H_2O $\rightarrow CO_2$ + H_2 $\Delta H_{978} \approx -34$ kJ/molMethanation (705°C): $\rightarrow CH_4$ + H_2O $\Delta H_{978} \approx -229$ kJ/mol

Catalytic Reformate Purification (CO-clean-up)

<u>10% - 1% CO: Water Gas Shift (WGS):</u> CO + H₂ O → CO₂ + H₂ (Methanation: CO + 3 H₂ → CH₄ + H₂O)

<u>Selective</u> Selective Selective Selective Selective Selective Selective Selec

 $2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2$

(Unselective Hydrogen Oxidation:

$$H_2 + O_2 \longrightarrow H_2O)$$

≤ 1% CO: Methanation:

$$CO + 3 H_2 \rightarrow CH_4 + H_2O$$

Fuel Processing in Microstructured Reactors – Exemplary Process Scheme: Steam Reforming

Steam Reforming in Integrated Microstructured Heat-Exchanger Reactors

Comparison between conventional fixed bed technology (conv) and a combined micro-structured plate heat-exchanger/ catalytic afterburner (micro)

MAA

E.R. Delsman, B.J.P.F. Laarhoven, M.H.J.M. de Croon, G.J. Kramer, J.C. Schouten, Comparison between conventional fixed-bed and microreactor technology for a portable hydrogen production case, Chem. Eng. Res. Design 83 (A9) (2005) 1063-1075

© IMM, 2008

Requirements for Catalyst Coating Performance

Activity (100% conversion)

Selectivity (no other by-products than CO and CH4)

Durability (at least 1,000 hours)

Sandwich Reactor Applied for Catalyst Screening and Testing

Process A: washcoating/wet impregnation

Process B: washcoating of commercially available catalyst powders (step 1 - 6)

Channel Dimensions: length 41 mm, width 500 $\mu m,$ depth 2 x 400 μm

14 Channels per plate

Zapf, R.; Becker-Willinger, C.; Berresheim, K.; Holz, H.; Gnaser, H.; Hessel, V.; Kolb, G.; Löb, P.; Pannwitt, A.-K.; Ziogas, A., *Trans IChemE* A **81** (2003) 721-729 R. Zapf et al., CET, (2006), 29, 1509

Catalyst Coating Stability Tests Temperature Cycling to 750°C before after **Drop Test:** 5 cycles 10 10 cycles 20 cycles

Test Reactors

Too bulky for practical system, mass of housing more than 95% of plate stack

© IMM, 2008

Screening Reactor (up to 800°C; 100 bar) (SOLEMIO)

Methanol Steam Reforming

Application: Small Scale Power Generation <100 W_{el} Lap-Top Charger

Y. Men et al. Int. J. Hydrogen Energy (2007) accepted for publication.

SYSTEM INTEGRATION – METHANOL REFORMING (100 W)

SYSTEM INTEGRATION – METHANOL REFORMING (100 W)

MM

The smaller the system, the simpler it has to be!

Ethanol Steam Reforming Application: Portable Power Supply < 1 kW_{el}

Summary of Tested Catalysts

Cotolysta	Metal loading	Surface area
Catalysis	[wt%]	$[m^2/g]$
Co/Al ₂ O ₃	10	161
Co/SiO ₂	10	165
Co/MgO	10	177
Co/ZnO	10	12
Ni/Al ₂ O ₃	10	156
Ni/MgO	10	70
Rh/Al_2O_3	5	149
Rh/MgO	5	58
Ru/Al_2O_3	5	149
Rh/Ni/Al ₂ O ₃	5/10	125
Rh/Ni/CeO ₂ /Al ₂ O ₃	5/10/15	170
Rh/Co/Al ₂ O ₃	5/10/15	164

Durability Test of Rh/Co/Al₂O₃ Catalysts

Stable for 130 hrs 650 °C

Integrated Ethanol Steam Reformer/ Catalytic Burner (250 W)

Propane(LPG) Steam Reforming Application: Power Supply for Caravans and Yachts <1 kW_{el}

Propane Steam Reforming in Microstructured Reactors

Conditions of Testing				
Catalyst:	4 wt.% Rh 4 wt.% Pt			
	24 wt.% CeO ₂			
	on γ-alumina			
Feed:	80 Vol.% N ₂ ;			
	20 Vol.% C ₃ H ₈ /H ₂ O			
WHSV _{feed} :	375 Ndm³/(h g _{cat})			
Pressure:	Ambient			

1000 Hours Durability Testing Catalyst: Proprietary Feed: C_3H_8/H_2O S/C: 4.0 WHSV_{feed}: 375 Ndm³/(h g_{cat}) Temp.: 750°C Pressure: Ambient

Application: The TRUMA Fuel Cell System – Joint Development

Truma Geraetetechnik GmbH & Co. KG

www.truma.de

Europe's largest manufacturer in the field of liquid gas heaters for leisure vehicles and boats.

Fuel Processor from IMM 250 W,

Fuel: LPG

Truma received the f-cell

award in silver 2007

Truma VeGA converts LPG into electricity!

"Truma is developing a fuel cell system that is specifically for the recreational vehicle area. With a view to the environment and efficient usage, we have put our faith in liquid © IMM Gas as a fuel supply."

Octane Autothermal Reforming Application: 5 kW_{el} Auxiliary Power Unit (APU) for Cars

Octane Inlet			
Inlet	Nominal capacity:	Hydrogen production for a 5 kW _{el} fuel cell	
air / steam	Design capacity:	Hydrogen production for a 20 kW _{el} fuel cell (safety factor 4)	
	Operating pressure:	Max. 4 bar	
Temperature m	e: Operating temperature:	Max. 800°C	
	Reactor dimensions:	80 x 80 x 150 mm³; 200 stainless steel foils (0.4 mm)	
	Channel dimensions:	400 x 250 μm² 2520 channels / in² 25000 channels	
	Coated channel surface:	2.6 m ²	
	Catalyst:	1% Rh on Al ₂ O ₃ -sol basis (developed by LIKAT/ CIRIMAT Toulouse)	
	Total catalyst mass:	19.5 g (0.2 g Rh)	

WHSV:

80 x 80 x 150 mm³; 200 stainless steel foils (0.4 mm)
400 x 250 μm² 2520 channels / in² 25000 channels
2.6 m ²
1% Rh on Al ₂ O ₃ -sol basis (developed by LIKAT/ CIRIMAT Toulouse)
19.5 g (0.2 g Rh)

330 Ndm³/(h g_{cat})

Gas Composition – ATR Product

		calculated [100% Conversion]			experimentally determined				
		feed ATR	product ATR	product ATR	product ATR				
				[d.b.]			[d.b.]		
Test Duration	[min]	-	-	-	58	81	83	123	125
H ₂ O	[mol %]	67.3	40.4	0.0	-	-	-	-	-
N ₂	[mol %]	23.4	18.1	30.4	33.7	31.4	31.7	33.9	33.8
O ₂	[mol %]	6.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C ₈ H ₁₈	[mol %]	2.5	0.0	0.0	-	-	-	-	-
CH ₄	[mol %]	0.0	1.7	2.9	2.6	2.9	2.8	2.8	2.9
C ₂ H ₄	[mol %]	0.0	0.1	0.2	0.2	0.2	0.2	0.2	0.3
C ₃ H ₆	[mol %]	n.d.	n.d.	n.d.	[0.03]	[0.05]	[0.06]	[0.02]	[0.02]
со	[mol %]	0.0	5.3	8.9	9.4	10.2	9.6	9.9	10.2
CO ₂	[mol %]	0.0	8.5	14.2	15.2	14.6	13.4	14.7	14.3
H ₂	[mol %]	0.0	25.8	43.3	41.7	41.7	41.6	42.6	42.3

Conversion: Determined by Adsorption and GC Analysis: >95% Determined by FT-Cyclotron-MS: > 99% G. Kolb et al., Chem. Eng. J. 138 (2008) 474-489

System Integration – Octane Reforming (5000 W_{el})

G. Kolb et al., Chem. Eng. J. 138 (2008) 474-489

© IMM, 2008

Diesel Steam Reforming Application: 5 kW_{el} Auxiliary Power Unit (APU) for Trucks

STR/AFB prototype (Explosion view)

Diesel Steam Reforming (2 kW) – GC/GC-MS Analysis

Diesel Oxydative Steam Reforming

Conversion > 99.9% S/C 3.6; O/C = 0

Diesel STR/AFB 5 kW_{el, net} prototype

Total: 6.5 kW_{el}; >10 kW_{th}

5 kW APU (System Integration by Tenneco)

Cold Part (Fuel Cell, Hot Part (Fuel Processor) **Compressor and BoP) Steam Reformer** (Truck Chssis CAD model: **Courtesy of DAF)**

CO-Clean-up: Water –Gas Shift

Feed Composition for High Temperature Shift

© IMM, 2008

CO-Clean-up: Preferential Oxidation

Experimental Protocol Long-term Testing PrOx

Self Developed Catalyst Formulation

Pressure:	Ambient
• Flow Rate:	30 Nml / min
Catalyst Mass:	10 mg
• WHSV:	3.0 Ndm ³ / (min g _{Kat})
	= 180 Ndm ³ / (h g _{Kat})

• Feed (Long Term Testing): λ (O/CO): 3

H ₂	H ₂ O	CO ₂	CO	N ₂	O ₂
[mol%]	[mol%]	[mol%]	[mol%]	[mol%]	[mol%]
64.6	0.0	23.8	1.2	8.5	1.9

MM

PrOx 1000 h Long Term Testing and Kinetics

E_a

Self-developed Pt/Rh/Al₂O₃-Formulation: $\lambda(O/C)=3$; WHSV= 180 NI/(min g_{cat}); $c_0(CO)= 1.1$ Vol.%

Kinetics Determined after 1000 h long term test in a microstructured gradientless recycle reactor with external recycle loop:

=
$$k_0 E_a [CO]^{-0.63} [O_2]^{0.71} [CO_2]^{-0.02}$$

= 2.62 10¹¹ = 91 kJ/mol

Comparison of 'Conventional' (Monolithic) and Internally Cooled Selective Oxidation

Delsman, E. R.; de Croon, M. H. J. M.; Kramer, G. J.; Cobden, P. D.; Hofmann, C., Cominos, V.; Schouten, J. *Chem. Eng. Sci.* **59** (2004) 4795-4802

Second Generation Prototype

Cominos V., Hessel V., Hofmann C., Kolb G., Zapf R., Ziogas A., Delsman E.R., Schouten J.C., Catal. Today 110 (2005) 140

SELOX reactor sealed by laser-welding				
Dimensions:	17x64x55 mm³			
Volume:	60 cm ³			
Weight:	150 g			
1 cm Klingersil insulation between				

Parameter	Heat	exchangers	PrOx reactor		
	Ref ^a	Cool	Ref	Cool	
Plate dimensions $(w \times I)$ (mm)	17	× 50	17 >	< 40	
Number of plates	2	4	22	11	
Channels per plate	29	29	13	10	
Channel width (µm)	400	400	1000	500	
Channel height (µm)	300	300	200	2.50	
Channel length (mm)	40	40	30	30	

^aRef : reformate side, Cool : coolant side.

single components

Coupled Dynamic Operation of Water-gas shift and Preferential Oxidation – 5 kW_{el, net} size

Balance-of-Plant: Heat-exchangers, Evaporators (for Fuel Processors and Fuel Cells)

Counter-flow Heat-exchangers

2 kW; 800°C

10 kW; 600°C

Virtual System – 500 W DMFC

Components for 500 W DMFC (BoP)

Cold-Start Heater

1 kW Radiator

Demister

Condenser

© IMM, 2008

Production Issues

Future Fuel Processors for:

Yachts / Caravans (< 1 kW): 1,000 – 10,000 / y

Automotive APU's (< 10 kW): 10,000 – 100,000 /y

Lap-tops (≤ 100 W): > 100,000 / y

Mass production required.
 Reactors are one-way products (already)
 And need to be: 1) Cheap
 2) Cheap
 3) Cheap

Fabrication Techniques Available

Sealing Techniques Available

- Conventional Machining (IMM)
- Micromilling (IMM)
- Wire- and Bulk EDM (IMM)
- Laser-Cutting (Gaskets, IMM)
- Etching (External)
- Laser-Micromachining (Ablation, IMM)
- Embossing (External)
- Punching (External)

- Gaskets Graphite / Metallic
- Laser-Welding (IMM + External)
- Brazing (External)
- Laser/ Electron Beam Welding (External)

Prototypes

- Small Series (< 1000);
- Big Devices for Chemicals Production

Mass Production (> 100 000)

Fabrication of the Reactors

Fabrication steps (prototypes):

- >Wet chemical etching of the microchannels into the steel foils
- >Catalyst coating
- Laser welding of the foil stack
- >Laser welding with additional welding filler for the inlet and outlet ports

Joining techniques: Brazing

View of small series of HX assembled

Development of Microstructuring Techniques- Rolling

Rolling is well suited for structuring thin metal sheets

With one pair of rollers lots of channel sizes can be realized (depending on sheet thickness and gap between rollers

Mass Production: In case fourfold structured rolls are used, around 2,000 plates (structured surface 150 x 50 mm) can be fabricated per hour

MA

Embossing

Embossed and laser welded microstructured heat exchanger

Cost Distribution for a Microstructured Heat-Exchanger/Reactor

Basis: 100,000 Reactors/y

© IMM, 2008

- 1 Introduction and outline
- 2 Fundamentals
- 3 The chemistry of fuel processing
- 4 Catalyst technology for distributed fuel processing applications
- 5 Fuel processor design concepts
- 6 Types of fuel processing reactors
- 7 Application of fuel processing reactors
- 8 Balance-of-plant components
- 9 Complete fuel processor systems
- 10 Introduction of fuel processors into the market place – cost and production issues

ca. 400 pages

about 650 references more than 280 figures and tables available as of March 26th 2008 ISBN 978-3-527-31581-9