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摘要 

本次出國之目的為參加於美國加州巴莎迪那市(Pasadena, California, USA)舉行

之2008 年IEEE 機器人與自動化國際研討會(2008 IEEE International Conference on 

Robotics and Automation, ICRA 2008)，並發表學術研究論文。ICRA 2008國際研討會

之主題為＂Human-Centered Robotics, the movement toward robotics technology that 

aids in the course of human everyday life.＂本次會議共有從47 個國家，1478 篇

論文投稿，審查結果僅661 篇（僅約45%）獲接受於本次大會發表。大會於95年5月19日

及5月20日排定有22個機器人與自動化相關之Tutorial及Workshop，並利用5月21日至23

日3天之時間，同一時間12至13場次(Parallel Tracks)，將所有論文利用口頭方式公開

發表，本人在本次會議發表論文乙篇「虛擬量測之嶄新變數篩選法則」，安排於5月23

日下午場次報告。 

 1



目次 

摘要 ......................................................................................................1 

目次 ......................................................................................................2 

一、目的 ..............................................................................................3 

二、過程 ..............................................................................................3 

三、心得 ..............................................................................................4 

四、建議事項 ......................................................................................4 

五、攜回資料名稱及內容 ..................................................................4 

附錄：虛擬量測之嶄新變數篩選法則論文內容 ..............................5 

 2



一、目的 

本次出國之目的為參加於美國加州巴莎迪那市(Pasadena, California, USA)舉行

之2008 年IEEE 機器人與自動化國際研討會(2008 IEEE International Conference on 

Robotics and Automation)，並發表論文乙篇，經費來源為行政院國家科學委員會補助

國內專家學者出席國際學術會議經費。 

二、過程 

本次2008年IEEE 機器人與自動化國際研討會於97 年5 月19 日至23日在美國加州

巴莎迪那市舉行。本次大會主題為＂Human-Centered Robotics, the movement toward 

robotics technology that aids in the course of human everyday life.＂本次會

議共有從47 個國家，1478 篇論文投稿，審查結果僅661 篇（僅約45%）獲接受於本次

大會發表。 

本次大會於95年5月19日及5月20日排定有22個機器人與自動化相關之Tutorial及

Workshop，並利用5月21日至23日3天之時間，同一時間12至13場次(Parallel Tracks)，

將所有論文利用口頭方式公開發表，本人在本次大會口頭發表論文乙篇，安排於5月23

日下午場次報告，論文資料如下： 

(中文題目：虛擬量測之嶄新變數篩選法則) 

Tung-Ho Lin, Fan-Tien Cheng, Aeo-Juo Ye, Wei-MingWu, and Min-Hsiung Hung, “A 

Novel Key-variable Sifting Algorithm for Virtual Metrology,” in Proceedings of 

2008 IEEE International Conference on Robotics and Automation, Pasadena, 

California, USA, pp. 3636-3641, May 19-23, 2008. 
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三、心得 

本次大會之特色除了3 場邀請之專題演講(Invited Plenary Talks)外，首次於ICRA 

會議舉辦機器人競賽，從世界各地來之學生隊伍，帶著他們的機器人到會場參加比賽。

此外，也舉辦了機器人連環漫畫競賽(Robot Comics Contest)，為學生舉辦之社交聯誼

活動，以及4 個交誼接待活動都屬於本次會議之創舉。大會也安排有18 展示攤位(展示

廠商包含了iRobot, Microsoft Research, Segway, 與 Willow Garage 等)，展覽各式

機器人、MAV、發展軟體等。本次國際學術會議，國內有多位的專家學者參加，包括：

台大電機系羅仁權教授與傅立成教授、成大製造所鄭芳田教授、交通大學電機與控制系

胡竹生與宋開泰教授等人。其中成大製造所鄭芳田教授榮獲2008 IEEE Fellow，於晚宴

中上台接受大會表揚。 

整體而言，本次大會相當成功。除了參加人數眾多外，各項首次舉辦之競賽與活動

也為大家所讚許，值得國內舉辦國際研討會時參考。 

四、建議事項 

最後，感謝國科會提供經費補助國內專家學者出席國際研討會，也期盼國內學者能

繼續積極參與國際學術活動並發表論文，以期提升我國之國際學術地位。 

五、攜回資料名稱及內容 

1. Proceedings CD of 2008 IEEE International Conference on Robotics and 

Automation. 
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Abstract –This work proposes an advanced key-variable
selecting method, the neural-network-based stepwise
selection (NN-based SS) method, which can enhance the
conjecture accuracy of the NN-based virtual metrology (VM)
algorithms. Multi-regression-based (MR-based) SS method is
widely applied in dealing with key-variable selecting
problems despite that it may not guarantee finding the best
model based on its selected variables. However, the variables
selected by MR-based SS may be adopted as the initial set of
variables for the proposed NN-based SS to reduce the SS
process time. The backward elimination and forward selection
procedures of the proposed NN-based SS are both performed
by the designated NN algorithm used for VM conjecturing.
Therefore, the key variables selected by NN-based SS will be
more suitable for the said NN-based VM algorithm as far as
conjecture accuracy is concerned. The etching process of
semiconductor manufacturing is used as the illustrative
example to test and verify the VM conjecture accuracy.
One-hidden-layered back-propagation neural networks
(BPNN-I) are adopted for establishing the NN models used in
the NN-based SS method and the VM conjecture models. Test
results show that the NN model created by the selected
variables of NN-based SS can achieve better conjecture
accuracy than that of MR-based SS. Simple recurrent neural
networks (SRNN) are also tested and proved to be able to
achieve similar results as those of BPNN-I.

Index Terms— Virtual metrology (VM), multi-regression-based
stepwise selection (MR-based SS), neural-network-based stepwise
selection (NN-based SS).

I. INTRODUCTION

n current practice of semiconductor manufacturing,
equipment-monitoring is performed by periodically

measuring one production wafer that is pre-selected within
each cassette (also called “FOUP” in semiconductor industry)
while the quality of other production wafers beyond the
measuring wafer is unknown. Thus, equipment abnormality
may not be discovered in time and many defective production
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wafers may have been produced. This may result in a great
wafer yield loss. An on-line and wafer-to-wafer (W2W)
monitoring alternative is to apply the virtual metrology (VM)
technology [1], [2]. Also referred to as predictive metrology
[3], VM can be adopted to conjecture the processing quality of
every wafer using the process data of production equipment
without physically conducting quality measurement. Through
VM, the quality of each wafer can be known immediately right
after the process data are obtained to ensure prompt detection
of equipment anomaly and avoid defective products [2].

In the semiconductor industry, run-to-run (R2R) control is
an important technique for enhancing process capability [4].
And Lot-to-lot (L2L) advanced process control (APC) is now
widely applied in the semiconductor manufacturing process.
As the size of electronic devices shrink gradually, W2W APC
has become essential for critical stages to improve production
yield [3], [4]. W2W APC requires the metrology values of
each wafer; however, it will be very time-consuming and
highly expensive to obtain each individual wafer’s actual
metrology value by physical measurement. Therefore, VM is a
good resolution for being applied in W2W APC [2], [5]. To
implement VM in W2W APC, high conjecture accuracy needs
to be primarily considered [2], [6].

For achieving high VM conjecture accuracy, it is essential
to select near-optimal set of variables that can represent the
actual property of production equipment. If too many
variables are chosen, irrelevant ones may be included, which
will add noise and affect the conjecture accuracy [7], [8].
However, if too few variables are selected, it may also lead to
failure in achieving high conjecture accuracy [9]. Among all
the variable-selecting methods, multi-regression-based
stepwise selection (denoted MR-based SS) is the most widely
applied one to choose a limited number of variables for
inclusion in the MR models, which is commonly used for
solving prediction problems [10]. Nevertheless, the variables
selected by MR-based SS may not be suitable for optimizing
those neural-network-based (denoted NN-based) VM
conjecture models used in [2], [6], [11], and [12] as far as
conjecture accuracy is concerned.

To improve the NN-based VM conjecture accuracy, this
work proposed an advanced method called NN-based SS. The
proposed method utilizes the initial set of variables suggested
by MR-based SS and performs backward elimination and
forward selection procedures repeatedly by the designated NN
algorithm used for VM conjecturing to find the key-variables
that have dominant contributions to VM conjecture accuracy.
The most common NN algorithms used for VM conjecturing
are back-propagation neural networks (BPNN) [6], [11], [12]
and simple recurrent neural networks (SRNN) [2], [6]. In this
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paper, one-hidden-layered BPNN (BPNN-I) are adopted as
the designated algorithm for evaluating the NN-based SS
method and the VM conjecture model. The variable-selecting
results of both MR-based and NN-based SS methods as well
as expert-recommended process variables (denoted ER-based
variables) are used to establish different VM models for
comparing their conjecture accuracy. The semiconductor
etching process is selected as the illustrative example for
accuracy comparison. Test results show that the NN models
created by the selected variables of NN-based SS can achieve
superior conjecture accuracy than those of MR-based SS and
ER-based. Besides, SRNN has also been tested and proved to
be able to achieve similar results as those of BPNN-I.

The remainder of this paper is organized as follows.
Section 2 briefs the MR-based SS method and details the
proposed NN-based SS methods. Next, Section 3 presents and
compares the experimental results of ER-based, MR-based SS,
and NN-based SS methods. The implications of experimental
results and implementation consideration are also discussed
here. Finally, a summary and conclusions are made in Section
4.

II. MR-BASED AND NN-BASED STEPWISE SELECTION
METHODS

This section introduces the MR-based SS and the
proposed NN-based SS
methods.
2.1 MR-based SS Method

Both forward selection
and backward elimination
steps are included in the
MR-based SS procedure.
Initially there are no variables
in the MR model. The
forward selection begins with
adding the variable that has
the greatest contribution into
the MR model. Then, the
backward elimination will
decide which entered variable
will be deleted. Repeat the
foregoing procedures until
the MR model stop entering
or removing any variables.
Finally, close the
variable-selecting procedure
and take the variables within
the MR model as the final
selection [13].

The MR-based SS method
possesses the advantages of
fast computation and easy
implementation. Nevertheless,
Anderson, et al. [14]
concluded that the MR-based
SS method cannot guarantee
finding the best set of

variables for optimizing the conjecture model. However, the
MR-based SS selecting result may be utilized as the initial set
of variables for the proposed NN-based SS method to reduce
the iterations in the backward elimination and forward
selection procedures.
2.2 NN-based SS Method

The NN-based SS method also has forward selection and
backward elimination procedures. However, because the
MR-based SS selecting result is assigned as the initial set of
variables, the NN-based SS process starts with backward
elimination. Within both the backward elimination and
forward selection steps, the designated NN algorithm is
applied. Therefore, the variable-selecting result of NN-based
SS is suitable for the designated NN-based VM conjecture
model.

Based on the flow chart of the NN-based SS method
shown in Fig. 1, the procedures are detailed as follows.
●Step 1.To reduce the iterations of backward elimination and

forward selection, MR-based SS is adopted to
generate the initial mi (i=0, where i is the iteration
number of backward elimination and forward
selection procedures) set of input variables for
NN-based SS. Besides, the variable p is assigned to
be zero initially and k represents the total number of

Fig. 1. Flow Chart of the NN-based SS Method.
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process variables.
●Step 2. The backward elimination procedure starts with

applying those mi variables to create the basic NN
model (NNB). Then, delete the first variable among
those mi ones and apply the remaining mi －

1variables to create the first testing NN model
(NNT1). Repeat the same procedure until a total of mi

testing NN models (NNTj, j=1, 2, … , mi) are created.
With those NNB and NNTj, mi partial F values [14]
are calculated.

●Step 3. Check whether at least one of the mi partial F values
is smaller than the pre-selected threshold value

(denoted Fout) (Fout=Fα=0.05, 1, n-mi-1), where n
represents the modeling sample size [14]. If the
answer is yes, then the system enters Step 4; else the
backward elimination procedure finishes and the
system enters the forward selection procedure.

●Step 4. Among the variables whose partial F values are
smaller than Fout, exclude the one with minimal
partial F value and let p=p+1, mi=mi－p.

●Step 5. The forward selection procedure commences with
applying those mi variables to create the basic NN
model (NNB). Then, add the first variable among
those k－mi ones and apply the mi+1 variables to

create the first testing NN model (NNT1). Follow the
same procedure until a total of k－mi testing NN

models (NNTj, j=1, 2, … , k－mi) are created. With

those NNB and NNTj, k－mi partial F values are

calculated.
●Step 6. Check whether at least one of the k－mi partial F

values exceeds the predetermined threshold value

(denoted Fin) (Fin =Fα=0.05, 1, n-mi-2). If the answer is yes,
then the system enters Step 7; else the system goes to
Step 8.

●Step 7. Among the variables whose corresponding partial F
values exceeding Fin, select the one with maximal
partial F value to enter the NN model (mi+1=mi+1).
Then, let mi=mi+1 and return to Step 2.

●Step 8. Because all the corresponding partial F values are
smaller than Fin, the variable-selecting procedure is
terminated and the remaining variables are the final
selection.

The definitions of the partial F, Fout, and Fin values
mentioned above are the same as those used for MR-based SS
and can be found in [14], [15], [16]. Statistically, the partial F
value provides a basis for determining whether the variable
deleted from (or added into) the model will cause a significant
reduction in the sum of squares due to error (denoted SSE) [14]
by comparing with the Fout (or Fin) value.

According to the forgoing definition, the Fin value is
specified to be slightly greater than the Fout value to make it
relatively more difficult for a variable to be added into than to
be deleted from the model [16]. As such, we can select the
variables with the most significant contribution into the model
and avoid a variable being continually entered and removed.

Moreover, a popular method used in [15] is to set the Fin and
Fout values as 4.0 and 3.9, which is roughly determined by
Fα=0.05, 1, n-mi-1=50=4.03. However, in general, the sample size (n)
and the number of variables (mi) within the model may not be
always fixed. Therefore, in this work, the Fout and Fin values
are defined as depending on n and mi.

III. ILLUSTRATIVE EXAMPLE

This illustrative example is based on a piece of
semiconductor etching equipment in Taiwan. The example
involves 248 sets of sample data. Except for the 248th set,
which is for the conjecture test, the other 247 sets of sample
data are all used for building the VM model. The first 247 sets
of sample data (process data; Xi, i=1, 2, … , 247) belong to 247
sampling wafers collected from 247 cassettes. Each cassette
contains 25 or less wafers. For a normal manufacturing
process, each cassette only has a sampling wafer that has the
corresponding actual metrology value. Thus, those process
data of all the 247 sampling wafers and their corresponding
actual metrology values (yi, i=1, 2, … , 247) are adopted for
establishing the models used in the ER-based, MR-based SS,
and NN-based SS methods.

For evaluating the conjecture accuracy, not only the
regular sampling wafer but all the other 24 wafers in the
testing (248th) cassette are measured. Therefore, the process
data of all the 25 wafers in the testing cassette are used to
obtain VM values, whereas the corresponding actual
metrology values of those 25 wafers are taken as the basis for
evaluating the VM conjecture accuracy.

According to the physical properties of production
equipment and the expertise of equipment engineers, among
36 equipment sensors and 12 processing steps, only 66
comparatively important variables (x1, x2, … , x66) are
considered as ER-based variables and become the inputs of
MR-based SS. Those ER-based variables are listed in Table I.

The conjecture accuracy of the ER-based, MR-based SS,
and NN-based SS methods was quantified by the maximum
error (MaxError) and the mean absolute percentage error
(MAPE) [2], [11]. The formulae are represented as follows.

1
ˆ| ( ) / |

100%

q

i i
i

y y y

M APE
q




  (1)

100%
ˆ

max , 1,2, ,
i iy y

MaxError i q
y




 
 
 
 

 (2)

where îy is the conjecture value, yi is the real metrology value,

y is the target value, and q is the conjecture sample size. The
closer the MaxError and MAPE values are to zero, the better
the accuracy of the VM conjecture model can achieve. MAPE
represents the average conjecture error of VM.

The computer used in this example is Core 2 Duo 6400
(2.13GHz) with a memory size of 2G. Microsoft Windows XP
is adopted as the operating system. The test results and their
implications as well as implementation consideration are
detailed as follows.
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3.1 Variable-Selecting Results
As mentioned previously, Fout is

determined by the pre-selected level
of significance (α) (set to be 0.05)
[14], one numerator degree of
freedom (denoted df) (one variable
deleted), and n － mi － 1

denominator df [14] (referring to
Step 3 of Fig. 1). In this case, the
modeling sample size (n) equals
247. For example, to delete one
variable from the model with
original 8 (=mi) variables, then the
Fout value is computed as
Fout=Fα=0.05, 1, 247-8-1=Fα=0.05, 1,

238=3.8808. If one of the computed
mi partial F values in the backward
elimination procedure (Step 2 of
Fig. 1) is smaller than Fout, then this
corresponding variable may be
deleted (Step 4 of Fig. 1).

Next, the Fin value is decided by
the specified α (=0.05), one
numerator df (one variable added),
and n－mi－2 (derived from n－

(mi+1) － 1) denominator df [14]

(Step 6 of Fig. 1). For instance, to
add one into the model with original
8 (=mi) variables, the Fin value is
calculated as Fin=Fα=0.05, 1,

247-8-2=Fα=0.05, 1, 237=3.8810. If one of
the computed k－mi partial F values

in the forward selection procedure
(Step 5 of Fig. 1) is greater than Fin,
then this corresponding variable
may be added (Step 7 of Fig. 1).

Tables II and III represent the
variable-selecting results of MR-based and NN-based SS
methods, respectively. The number of their selected variables
(chosen from the original 66 ones) turn out to be only ten and

nine, respectively. The ten MR-based selected variables are {1,
4, 10, 36, 43, 45, 51, 53, 56, 66} and the nine NN-based
selected ones are {1, 5, 29, 36, 45, 51, 53, 56, 66}. Seven

TABLE II
VARIABLE-SELECTING RESULTS OF MR-BASED SS

Variable Code Sensor Name Step No.

1 Flow Sensor _1 Step 5

4 b Flow Sensor _4 Step 5

10 b Valve Sensor_1 Step 5

36 Voltage Sensor _3 Step 5

43 b Valve Sensor_1 Step 7

45 Voltage Sensor _1 Step 7

51 Flow Sensor _3 Step 7

53 Capacitance Sensor _2 Step 7

56 Temp Sensor _1 Step 7

66 Pre-Y NAa

aPre-Y data are collected from the previous process. Thus, they
don’t belong to any step of the current process.

bThe variables in square will be deleted by NN-based SS.

TABLE I
LIST OF ER-BASED VARIABLES

Variable Code Sensor Name Step No. Variable Code Sensor Name Step No.

1 Flow Sensor _1 Step 5 34 Valve Sensor_2 Step 5

2 Flow Sensor _2 Step 5 35 Pressure Sensor _3 Step 5

3 Flow Sensor _3 Step 5 36 Voltage Sensor _3 Step 5

4 Flow Sensor _4 Step 5 37 Flow Sensor _1 Step 7

5 Signal Sensor _1 Step 5 38 Signal Sensor _1 Step 7

6 Signal Sensor _2 Step 5 39 Signal Sensor _2 Step 7

7 Signal Sensor _3 Step 5 40 Signal Sensor _3 Step 7

8 Flow Sensor _5 Step 5 41 Flow Sensor _2 Step 7

9 Pressure Sensor _1 Step 5 42 Pressure Sensor _1 Step 7

10 Valve Sensor_1 Step 5 43 Valve Sensor_1 Step 7

11 Pressure Sensor _2 Step 5 44 Pressure Sensor _2 Step 7

12 Voltage Sensor _1 Step 5 45 Voltage Sensor _1 Step 7

13 Power Sensor _1 Step 5 46 Power Sensor _1 Step 7

14 Power Sensor _2 Step 5 47 Power Sensor _2 Step 7

15 Power Sensor _3 Step 5 48 Power Sensor _3 Step 7

16 Power Sensor _4 Step 5 49 Power Sensor _4 Step 7

17 Voltage Sensor _2 Step 5 50 Voltage Sensor _2 Step 7

18 Flow Sensor _6 Step 5 51 Flow Sensor _3 Step 7

19 Capacitance Sensor _1 Step 5 52 Capacitance Sensor _1 Step 7

20 Capacitance Sensor _2 Step 5 53 Capacitance Sensor _2 Step 7

21 Capacitance Sensor _3 Step 5 54 Capacitance Sensor _3 Step 7

22 Capacitance Sensor _4 Step 5 55 Capacitance Sensor _4 Step 7

23 Temp Sensor _1 Step 5 56 Temp Sensor _1 Step 7

24 Temp Sensor _2 Step 5 57 Temp Sensor _2 Step 7

25 Temp Sensor _3 Step 5 58 Temp Sensor _3 Step 7

26 Temp Sensor _4 Step 5 59 Temp Sensor _4 Step 7

27 Temp Sensor _5 Step 5 60 Temp Sensor _5 Step 7

28 Temp Sensor _6 Step 5 61 Temp Sensor _6 Step 7

29 Temp Sensor _7 Step 5 62 Temp Sensor _7 Step 7

30 Flow Sensor_7 Step 5 63 Flow Sensor _4 Step 7

31 Flow Sensor_8 Step 5 64 Valve Sensor_2 Step 7

32 Flow Sensor_9 Step 5 65 Pressure Sensor _3 Step 7

33 Flow Sensor_10 Step 5 66 Pre-Y NAa

aPre-Y data are collected from the previous process. Thus, they don’t belong to any step of the current
process.

TABLE III
VARIABLE-SELECTING RESULTS OF NN-BASED SS

Variable Code Sensor Name Step No.

1 Flow Sensor _1 Step 5

5 b Signal Sensor _1 Step 5

29 b Temp Sensor _7 Step 5

36 Voltage Sensor _3 Step 5

45 Voltage Sensor _1 Step 7

51 Flow Sensor _3 Step 7

53 Capacitance Sensor _2 Step 7

56 Temp Sensor _1 Step 7

66 Pre-Y NAa

aPre-Y data are collected from the previous process. Thus, they don’t
belong to any step of the current process.

bThe variables in square are added by NN-based SS.
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(b) NN-based SS.
Fig. 2. Partial-F Pareto Charts of MR-based and NN-based SS Methods.

Sample No.
5 10 15 20 25

7.5

6

4.5

3.0

1.5

0

-1.5

-3

-4.5

-6

-7.5

V
M

C
o

n
je

c
tu

re
R

e
s
u

lt
s

(%
)

Target

Sample No.
5 10 15 20 25

7.5

6

4.5

3.0

1.5

0

-1.5

-3

-4.5

-6

-7.5

V
M

C
o

n
je

c
tu

re
R

e
s
u

lt
s

(%
)

Target

Fig. 3. VM Conjecture Results of ER-based, MR-based SS, and NN-based SS Methods (using BPNN-I).

variables selected by MR-based SS remain in the NN-based
SS result. Figure 2 depicts the partial-F Pareto charts of
MR-based SS and NN-based SS methods. The seven variables
in red {1, 36, 45, 51, 53, 56, 66} are the common ones
selected by both SS methods. Among those common variables,
Variable 66 is the one with maximal partial F value in either
group of selected variables. Further, MR-based SS includes
Variables {4, 10, 43} into the MR model, whereas NN-based
SS deletes Variables {4, 10, 43} and adds Variables {5, 29}
instead in the NN model.
3.2 VM Conjecture Results

Table IV and Fig. 3 illustrate the VM conjecture results
based on the NN models generated by the ER-based,
MR-based, and NN-based SS methods. As shown in Table IV,

MaxError and

MAPE stand for the
mean values of 30
MaxErrors and
MAPEs for
conjecturing those
25-evaluating
samples 30 times,
respectively. Table
IV illustrates that the

MaxError s for the
NN models of
ER-based,
MR-based SS, and
NN-based SS are
2.38%, 1.87%, and
1.70%, respectively.

And the MAPE s
based on the NN
models of ER-based,
MR-based SS, and
NN-based SS are
1.11%, 1.01%, and
0.89%, respectively.

TABLE IV
VM CONJECTURE RESULTS OF VARIOUS SELECTION

METHODS (using BPNN-I)
Accuracy (%)Variable-selecting

Method MaxError MAPE
ER-based 2.38 1.11
MR-based SS 1.87 1.01
NN-based SS 1.70 0.89

TABLE V
VM CONJECTURE RESULTS OF VARIOUS SELECTION

METHODS (using SRNN)
Accuracy (%)Variable-selecting

Method MaxError MAPE
ER-based 2.88 1.12
MR-based SS 2.09 1.04
NN-based SS 1.84 0.96
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According to the data shown in Table IV, apparently, the NN
model based on NN-based SS has the best conjecture accuracy.
In other words, although NN-based SS selects the least
number of variables comparing to that of ER-based and
MR-based SS (referring to Tables II, III and Fig. 2), its VM
conjecture model still achieves superior accuracy. This result
reveals that NN-based SS can select the most critical variables
among the original ones to prevent unimportant variables from
affecting the VM conjecture accuracy [7]. Moreover, by
applying the Pair-T hypothesis test [17], significant difference
of VM conjecture accuracy between the MR-based SS and
NN-based SS methods is verified.

Besides BPNN-I, the authors also apply SRNN as the
designated NN algorithm for all the experiments.
Experimental results show that SRNN can achieve the similar
results (as shown in Table V) as BPNN-I. Table V illustrates

that the MaxError s for the NN models of ER-based, MR-based
SS, and NN-based SS are 2.88%, 2.09%, and 1.84%,

respectively. And the MAPE s based on the NN models of
ER-based, MR-based SS, and NN-based SS are 1.12%, 1.04%,
and 0.96%, respectively.

The etching equipment for experiment has three chambers.
Different chamber has different physical property. Therefore,
those three chambers should have their own VM conjecture
models as far as VM conjecture accuracy is concerned. The
experimental results mentioned above belong to one of the
three chambers. In fact, experiments of the other two
chambers have also been performed in this work and similar
results are obtained. Therefore, it is concluded that the NN
model created by the selected variables of NN-based SS can
indeed achieve better conjecture accuracy than that of
MR-based SS.

V. SUMMARY AND CONCLUSIONS

An advanced key-variable selecting method called
“NN-based SS” for enhancing VM conjecture accuracy is
proposed in this paper. An etching process of semiconductor
manufacturing is selected as the illustrative example to test
and compare the VM conjecture accuracy of the ER-based,
MR-based SS, and NN-based SS methods. BPNN-I are
adopted as the designated NN algorithm for creating the NN
model of NN-based SS and MR-based SS and the VM
conjecture models. Test results show that the NN models
created by the selected variables of NN-based SS can achieve
better VM conjecture accuracy than that of ER-based and
MR-based SS. Besides, SRNN has also been tested and been
proven to be able to achieve similar results as those of
BPNN-I. Therefore, to enhance the VM conjecture accuracy,
it is recommended to adopt the NN-based SS as the
variable-selecting method for creating the NN-based VM
conjecture models.
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