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Abstract -This work proposes an advanced key-variable
selecting method, the neural-network-based stepwise
selection (NN-based SS) method, which can enhance the
conjecture accuracy of the NN-based virtual metrology (VM)
algorithms. Multi-regression-based (MR-based) SS method is
widely applied in dealing with key-variable selecting
problems despite that it may not guarantee finding the best
model based on its selected variables. However, the variables
selected by MR-based SS may be adopted as the initial set of
variables for the proposed NN-based SS to reduce the SS
process time. The backward elimination and forward selection
procedures of the proposed NN-based SS are both performed
by the designated NN algorithm used for VM conjecturing.
Therefore, the key variables selected by NN-based SS will be
more suitable for the said NN-based VM algorithm as far as
conjecture accuracy is concerned. The etching process of
semiconductor manufacturing is used as the illustrative
example to test and verify the VM conjecture accuracy.
One-hidden-layered back-propagation neural networks
(BPNN-I) are adopted for establishing the NN models used in
the NN-based SS method and the VM conjecture models. Test
results show that the NN model created by the selected
variables of NN-based SS can achieve better conjecture
accuracy than that of MR-based SS. Simple recurrent neural
networks (SRNN) are also tested and proved to be able to
achieve similar results as those of BPNN-I.

Index Terms—Virtual metrology (VM), multi-regression-based
stepwise selection (MR-based SS), neural-network-based stepwise
selection (NN-based SS).

I. INTRODUCTION

I n current practice of semiconductor manufacturing,
equipment-monitoring is performed by periodically
measuring one production wafer that is pre-selected within
each cassette (also called “FOUP” in semiconductor industry)
while the quality of other production wafers beyond the
measuring wafer is unknown. Thus, equipment abnormality
may not be discovered in time and many defective production

The author would like to thank the National Science Council of the
Republic of China for financially supporting this research under contract No:
NSC96-2622-E-006-043.

* Tung-Ho Lin, Fan-Tien Cheng (the corresponding author), Aeo-Juo Ye,
and Wei-Ming Wu are with the Institute of Manufacturing Engineering,
National Cheng Kung University, Tainan 70101, Taiwan, R.O.C. (e-mail:
peterlin@super.ime.ncku.edu.tw; chengft@mail.ncku.edu.tw;
eaoge(@super.ime.ncku.edu.tw; min@super.ime.ncku.edu.tw).

** Min-Hsiung Hung is with the Department of Electrical and Electronic
Engineering, Chung Cheng Institute of Technology, National Defense
University, Taiwan, R.O.C. (Phone: +886-3-3801126 Ext.316521;
Fax:+886-3-3801407; e-mail: mhhung@ndu.edu.tw ).

978-1-4244-1647-9/08/$25.00 ©2008 IEEE.

wafers may have been produced. This may result in a great
wafer yield loss. An on-line and wafer-to-wafer (W2W)
monitoring alternative is to apply the virtual metrology (VM)
technology [1], [2]. Also referred to as predictive metrology
[3], VM can be adopted to conjecture the processing quality of
every wafer using the process data of production equipment
without physically conducting quality measurement. Through
VM, the quality of each wafer can be known immediately right
after the process data are obtained to ensure prompt detection
of equipment anomaly and avoid defective products [2].

In the semiconductor industry, run-to-run (R2R) control is
an important technique for enhancing process capability [4].
And Lot-to-lot (L2L) advanced process control (APC) is now
widely applied in the semiconductor manufacturing process.
As the size of electronic devices shrink gradually, W2W APC
has become essential for critical stages to improve production
yield [3], [4]. W2W APC requires the metrology values of
each wafer; however, it will be very time-consuming and
highly expensive to obtain each individual wafer’s actual
metrology value by physical measurement. Therefore, VM is a
good resolution for being applied in W2W APC [2], [5]. To
implement VM in W2W APC, high conjecture accuracy needs
to be primarily considered [2], [6].

For achieving high VM conjecture accuracy, it is essential
to select near-optimal set of variables that can represent the
actual property of production equipment. If too many
variables are chosen, irrelevant ones may be included, which
will add noise and affect the conjecture accuracy [7], [8].
However, if too few variables are selected, it may also lead to
failure in achieving high conjecture accuracy [9]. Among all
the wvariable-selecting methods, multi-regression-based
stepwise selection (denoted MR-based SS) is the most widely
applied one to choose a limited number of variables for
inclusion in the MR models, which is commonly used for
solving prediction problems [10]. Nevertheless, the variables
selected by MR-based SS may not be suitable for optimizing
those neural-network-based (denoted NN-based) VM
conjecture models used in [2], [6], [11], and [12] as far as
conjecture accuracy is concerned.

To improve the NN-based VM conjecture accuracy, this
work proposed an advanced method called NN-based SS. The
proposed method utilizes the initial set of variables suggested
by MR-based SS and performs backward elimination and
forward selection procedures repeatedly by the designated NN
algorithm used for VM conjecturing to find the key-variables
that have dominant contributions to VM conjecture accuracy.
The most common NN algorithms used for VM conjecturing
are back-propagation neural networks (BPNN) [6], [11], [12]
and simple recurrent neural networks (SRNN) [2], [6]. In this
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paper, one-hidden-layered BPNN (BPNN-I) are adopted as
the designated algorithm for evaluating the NN-based SS
method and the VM conjecture model. The variable-selecting
results of both MR-based and NN-based SS methods as well
as expert-recommended process variables (denoted ER-based
variables) are used to establish different VM models for
comparing their conjecture accuracy. The semiconductor
etching process is selected as the illustrative example for
accuracy comparison. Test results show that the NN models
created by the selected variables of NN-based SS can achieve
superior conjecture accuracy than those of MR-based SS and
ER-based. Besides, SRNN has also been tested and proved to
be able to achieve similar results as those of BPNN-I.

The remainder of this paper is organized as follows.
Section 2 briefs the MR-based SS method and details the
proposed NN-based SS methods. Next, Section 3 presents and
compares the experimental results of ER-based, MR-based SS,
and NN-based SS methods. The implications of experimental
results and implementation consideration are also discussed
here. Finally, a summary and conclusions are made in Section
4.

II. MR-BASED AND NN-BASED STEPWISE SELECTION

METHODS
This section introduces the MR-based SS and the
proposed  NN-based SS
methods. Start

2.1 MR-based SS Method

variables for optimizing the conjecture model. However, the
MR-based SS selecting result may be utilized as the initial set
of variables for the proposed NN-based SS method to reduce
the iterations in the backward elimination and forward
selection procedures.
2.2 NN-based SS Method

The NN-based SS method also has forward selection and
backward elimination procedures. However, because the
MR-based SS selecting result is assigned as the initial set of
variables, the NN-based SS process starts with backward
elimination. Within both the backward elimination and
forward selection steps, the designated NN algorithm is
applied. Therefore, the variable-selecting result of NN-based
SS is suitable for the designated NN-based VM conjecture
model.

Based on the flow chart of the NN-based SS method
shown in Fig. 1, the procedures are detailed as follows.
@Step 1.To reduce the iterations of backward elimination and

forward selection, MR-based SS is adopted to
generate the initial m; (i=0, where i is the iteration
number of backward elimination and forward
selection procedures) set of input variables for
NN-based SS. Besides, the variable p is assigned to
be zero initially and & represents the total number of

Both forward selection
and backward elimination
steps are included in the

1. Use MR-based SS method to
decide the initial set of input
variables (mi, i—0), set p =0,

k=total no. of variables.

MR-based SS procedure.

Initially there are no variables

2. Apply those m. variables

I 1
in the MR model. The ! s to create the basic N'N model _ !
. . . > (NNB) and m: testing NN <

forward selection begins with ! models (NN /=1, 2. .. my). !

adding the variable that has | Then, /m partial I values are |

R . . H calculated. H

the greatest contribution into | |

the MR model. Then, the i i

backward elimination will . 4. Among the variables with .

. . . | 3. One of partial F values partial F values < Fout, exclude the l

decide which entered variable | <Fout (Fout =Fa0.05. 1. rm-1 one with min. partial F value. !

will be deleted. Repeat the | Ww—p L, m—m_p) |

foregoing procedures until iﬁ——————————— - —————x

. Forward |

the MR model stop entering i S. Apply the 7 variables to i

: . create the basic NN model (NNB)

or removing any variables. i and add the remaining k— m: i
Finall close the variables one by one to create

. Y . ! testing NN models (NN, !

variable-selecting procedure ! J=1.2. . k—m. Then, k—m: !

and take the variables within | partial F values are calculated. |

the MR model as the final i i

selection [13]. [ . . ) I

. 8. Terminate the variable-selection
The MR-based SS method ! 6> En?:fjlj__m;ilglrl valuzes procedure and take the remaining !
in (Fin=Fa—0.05, 1, - o he Binal soleation:

pOSSCSSQS the advantages Of ! variables as the final selection !

fast computation and easy | |

. . 1 1
: 7. Among the variables with

implementation. Nevertheless, | . |

Anderson, et al [14] i partial F values > Fin, select the i

concluded that the MR-based one W"h(‘;;af‘:‘,’:r‘"f)l Fvalue. i

SS method cannot guarantee

finding the best set of

Fig. 1. Flow Chart of the NN-based SS Method.
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process variables.

@Step 2. The backward elimination procedure starts with
applying those m; variables to create the basic NN
model (NNp). Then, delete the first variable among
those m; ones and apply the remaining m; —
lvariables to create the first testing NN model
(NNr). Repeat the same procedure until a total of m;
testing NN models (NNy;, j=1, 2, ..., m;) are created.
With those NNg and NNy, m; partial F values [14]
are calculated.

@Step 3. Check whether at least one of the m; partial F values
is smaller than the pre-selected threshold value
(denoted F,y) (Fou=Fa=0.05, 1, n-m-1), where n
represents the modeling sample size [14]. If the
answer is yes, then the system enters Step 4; else the
backward elimination procedure finishes and the
system enters the forward selection procedure.

@Step 4. Among the variables whose partial F values are
smaller than F,,, exclude the one with minimal
partial F value and let p=p+1, m;=m; —p.

@®Step 5. The forward selection procedure commences with
applying those m; variables to create the basic NN
model (NNg). Then, add the first variable among
those k—m; ones and apply the m;+1 variables to
create the first testing NN model (NNr,;). Follow the
same procedure until a total of k—m; testing NN
models (NNy;, /=1, 2, ..., k—m;) are created. With
those NNy and NNy;, k—m; partial F values are
calculated.

@Step 6. Check whether at least one of the k—m; partial F
values exceeds the predetermined threshold value
(denoted F;y) (Fi =Fa=0.05, 1, n-m-2). If the answer is yes,
then the system enters Step 7; else the system goes to
Step 8.

@Step 7. Among the variables whose corresponding partial F
values exceeding F;,, select the one with maximal
partial F value to enter the NN model (m;.;=m+1).
Then, let m;=m;.; and return to Step 2.

@Step 8. Because all the corresponding partial F values are
smaller than F;,, the variable-selecting procedure is
terminated and the remaining variables are the final
selection.

The definitions of the partial F, F,, and F; values
mentioned above are the same as those used for MR-based SS
and can be found in [14], [15], [16]. Statistically, the partial F
value provides a basis for determining whether the variable
deleted from (or added into) the model will cause a significant
reduction in the sum of squares due to error (denoted SSE) [14]
by comparing with the F, (or F;,) value.

According to the forgoing definition, the F;, value is
specified to be slightly greater than the F,, value to make it
relatively more difficult for a variable to be added into than to
be deleted from the model [16]. As such, we can select the
variables with the most significant contribution into the model
and avoid a variable being continually entered and removed.

Moreover, a popular method used in [15] is to set the F, and
Fou values as 4.0 and 3.9, which is roughly determined by
Fo=0.05. 1. n-mi-1=50=4.03. However, in general, the sample size (n)
and the number of variables (m;) within the model may not be
always fixed. Therefore, in this work, the F,, and F;, values
are defined as depending on # and m;.

III. ILLUSTRATIVE EXAMPLE

This illustrative example is based on a piece of
semiconductor etching equipment in Taiwan. The example
involves 248 sets of sample data. Except for the 248" set,
which is for the conjecture test, the other 247 sets of sample
data are all used for building the VM model. The first 247 sets
of sample data (process data; X;, i=1,2, ..., 247) belong to 247
sampling wafers collected from 247 cassettes. Each cassette
contains 25 or less wafers. For a normal manufacturing
process, each cassette only has a sampling wafer that has the
corresponding actual metrology value. Thus, those process
data of all the 247 sampling wafers and their corresponding
actual metrology values (y, i=1, 2, ..., 247) are adopted for
establishing the models used in the ER-based, MR-based SS,
and NN-based SS methods.

For evaluating the conjecture accuracy, not only the
regular sampling wafer but all the other 24 wafers in the
testing (248™) cassette are measured. Therefore, the process
data of all the 25 wafers in the testing cassette are used to
obtain VM values, whereas the corresponding actual
metrology values of those 25 wafers are taken as the basis for
evaluating the VM conjecture accuracy.

According to the physical properties of production
equipment and the expertise of equipment engineers, among
36 equipment sensors and 12 processing steps, only 66
comparatively important variables (x;, x, ..., Xg5) are
considered as ER-based variables and become the inputs of
MR-based SS. Those ER-based variables are listed in Table I.

The conjecture accuracy of the ER-based, MR-based SS,
and NN-based SS methods was quantified by the maximum
error (MaxError) and the mean absolute percentage error
(MAPE) [2], [11]. The formulae are represented as follows.

M=

|(J,>L _y,')/y|
! x100%
q

MaxError :max{wxloo%, i= 1,2,~~,q}

MAPE = (D

2
y

where f/i is the conjecture value, y;is the real metrology value,

y is the target value, and g is the conjecture sample size. The
closer the MaxError and MAPE values are to zero, the better
the accuracy of the VM conjecture model can achieve. MAPE
represents the average conjecture error of VM.

The computer used in this example is Core 2 Duo 6400
(2.13GHz) with a memory size of 2G. Microsoft Windows XP
is adopted as the operating system. The test results and their
implications as well as implementation consideration are
detailed as follows.
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3.1 Variable-Selecting Results
As mentioned previously, Fy is

TABLE I

LIST OF ER-BASED VARIABLES

determined by the pre-selected level  |variable Code Sensor Name Step No. | Variable Code Sensor Name Step No.
of significance (a) (set to be 0.05) 1 Flow Sensor _1 Step 5 34 Valve Sensor 2 Step 5
[14], one numerator degree of 2 Flow Sensor 2 Step 5 35 Pressure Sensor 3 Step 5
freedom (denoted df) (one variable 3 Flow Sensor 3 Step 5 36 Voltage Sensor 3 Step 5
deleted), and n — m; — 1 4 Flow Sensor 4 Step 5 37 Flow Sensor 1 Step 7
denominator df [14] (referring to 5 Signal Sensor _1 Step 5 38 Signal Sensor 1 Step 7
Step 3 of Fig. 1). In this case, the 6 Signal Sensor 2 Step 5 39 Signal Sensor 2 Step 7
modeling sample size (n) equals 7 Signal Sensor 3 Step 5 40 Signal Sensor 3 Step 7
247. For example, to delete one 8 Flow Sensor 5 Step 5 41 Flow Sensor 2 Step 7
variable from the model with 9 Pressure Sensor 1 Step 5 42 Pressure Sensor 1 Step 7
original 8 (=m;) variables, then the 10 Valve Sensor 1 Step 5 43 Valve Sensor 1 Step 7
Fou value is computed as 11 Pressure Sensor _2 Step 5 44 Pressure Sensor _2 Step 7
Fout:F(FO.OS, . 247_8_1:1:&:0'05’ . 12 Voltage Sensor 1 Step 5 45 Voltage Sensor 1 Step 7
235=3.8808. If one of the computed 13 Power Sensor 1 Step 5 46 Power Sensor 1 Step 7
m; partial F values in the backward 14 Power Sensor 2 Step 5 47 Power Sensor 2 Step 7
elimination procedure (Step 2 of 15 Power Sensor 3 Step 5 48 Power Sensor 3 Step 7
Fig. 1) is smaller than F,,, then this 16 Power Sensor 4 Step 5 49 Power Sensor 4 Step 7
corresponding variable may be 17 Voltage Sensor 2 Step 5 50 Voltage Sensor 2 Step 7
deleted (Step 4 of Fig. 1). 18 Flow Sensor 6 Step 5 51 Flow Sensor 3 Step 7
Next, the F;, value is decided by 19 Capacitance Sensor | Step 5 52 Capacitance Sensor | Step 7
the spe cified « (:0.05)’ one 20 Capacitance Sensor 2 Step 5 53 Capacitance Sensor 2| Step 7
numerator df (one variable adde d), 21 Capac%tance Sensor 3 Step 5 54 Capac%tance Sensor 3 Step 7
and n—m; —2 ( derived from 7 — ;i ](fapac;tance Seilsor _4 ::ep : 22 ](fapac;tance Seilsor _4 ::ep ;
. emp Sensor _ ep emp Sensor _ ep
(mit1) = 1) . denommat_or df [14] 24 Temp Sensor 2 Step 5 57 Temp Sensor 2 Step 7
(Step 6 F)f Fig. 1). For 195"3“?63 to 25 Temp Sensor 3 Step 5 58 Temp Sensor 3 Step 7
add one mtolthe model with Orlgm".ﬂ 26 Temp Sensor 4 Step 5 59 Temp Sensor 4 Step 7
8 (:m i) variables, the Fi, value is 27 Temp Sensor 5 Step 5 60 Temp Sensor 5 Step 7
calculated as Fini=Fo-00s, 1, 28 Temp Sensor 6 Step 5 61 Temp Sensor 6 Step 7
24785~ Fo=005, 1,237=3.8810. If one of 29 Temp Sensor 7 Step 5 62 Temp Sensor 7 Step 7
the computed k—m; partial F values 30 Flow Sensor 7 Step 5 63 Flow Sensor 4 Step 7
in the forward selection procedure 31 Flow Sensor_8 Step 5 64 Valve Sensor 2 Step 7
(Step 5 of Fig. 1) is greater than Fy, 32 Flow Sensor 9 Step 5 65 Pressure Sensor 3 Step 7
then this corresponding variable 33 Flow Sensor 10 Step 5 66 Pre-Y NA®

may be added (Step 7 of Fig. 1).
Tables II and III represent the
variable-selecting results of MR-based and NN-based SS
methods, respectively. The number of their selected variables
(chosen from the original 66 ones) turn out to be only ten and

*Pre-Y data are collected from the previous process. Thus, they don’t belong to any step of the current
process.

nine, respectively. The ten MR-based selected variables are {1,
4, 10, 36, 43, 45, 51, 53, 56, 66} and the nine NN-based
selected ones are {1, 5, 29, 36, 45, 51, 53, 56, 66}. Seven

TABLE 11 TABLE II1
VARIABLE-SELECTING RESULTS OF MR-BASED SS VARIABLE-SELECTING RESULTS OF NN-BASED SS
Variable Code Sensor Name Step No. Variable Code Sensor Name Step No.
1 Flow Sensor _1 Step 5 1 Flow Sensor _1 Step 5
Elb Flow Sensor 4 Step 5 b Signal Sensor _1 Step 5
b Valve Sensor_1 Step 5 @l ° Temp Sensor _7 Step 5
36 Voltage Sensor 3 Step 5 36 Voltage Sensor 3 Step 5
b Valve Sensor_1 Step 7 45 Voltage Sensor _1 Step 7
45 Voltage Sensor _1 Step 7 51 Flow Sensor _3 Step 7
51 Flow Sensor 3 Step 7 53 Capacitance Sensor 2 Step 7
53 Capacitance Sensor 2 Step 7 56 Temp Sensor _1 Step 7
56 Temp Sensor _1 Step 7 66 Pre-Y NA®
66 Pre-Y NA? Pre-Y data are collected from the previous process. Thus, they don’t

belong to any step of the current process.

*Pre-Y data are collected from the previous process. Thus, they b ; ;
The variables in square are added by NN-based SS.

don’t belong to any step of the current process.
The variables in sauare will be deleted bv NN-based SS.
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Variable Code

(a) MR-based SS.
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45 36
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(b) NN-based SS.

Fig. 2. Partial-F Pareto Charts of MR-based and NN-based SS Methods.

variables selected by MR-based SS remain in the NN-based

TABLE IV

SS result. Figure 2 depicts the partial-F Pareto charts of

VM CONJECTURE RESULTS OF VARIOUS SELECTION
METHODS (using BPNN-I)

MR-based SS and NN-based SS methods. The seven variables - - 5
. Variable-selecting Accuracy (%)
in red {1, 36, 45, 51, 53, 56, 66} are the common ones

. Method MaxError MAPE
selected by both SS methods. Among those common variables, ER-based 238 L1l
Variable 66 is the one with maximal partial F value in either MR-based SS 187 o1
group of selected variables. Further, MR-based SS includes NN-based SS 1.70 0.89
Variables {4, 10, 43} into the MR model, whereas NN-based TABLE V

SS deletes Variables {4, 10, 43} and adds Variables {5, 29}

METHODS (using SRNN)

VM CONJECTURE RESULTS OF VARIOUS SELECTION

instead in the NN model.

. . . A %
3.2 VM Conjecture Results Vanaf/llzﬂslzlgcmg NaxE ccuraCY(l\iIAPE
Table IV and Fig. 3 illustrate the VM conjecture results axrror
ER-based 2.88 1.12
based on the NN models generated by the ER-based, MR-based SS 2.09 104
MR-based, and NN-based SS methods. As shown in Table IV, NN-based SS 1.84 0.96

MaxError and 7.5

MAPE stand for the

mean values of 30 s_ .................................. .................................. ................................ _
MaxErrors and

MAPEs for S S SO SO O OO O SO OO SO
conjecturing  those :

25-evaluating 300 i

samples 30 times,
respectively. Table
IV illustrates that the
MaxError s for the

\ # Actual Metrology —=— ER-based —5— MR-based SS —+— NN-based SS

NN  models of
ER-based,

MR-based SS, and
NN-based SS are

VM Conjecture Results (%)

2.38%, 1.87%, and i
1.70%, respectively. ; i i :
And the MAPE s e B S e i —
based on the NN 5 ; :
models of ER-based, B H I e 7

MR-based SS, and 5 5
NN-based SS are 75 i i

25

1.11%, 1.01%, and
0.89%, respectively.

Sample No.
Fig. 3. VM Conjecture Results of ER-based, MR-based SS, and NN-based SS Methods (using BPNN-I).
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According to the data shown in Table IV, apparently, the NN
model based on NN-based SS has the best conjecture accuracy.
In other words, although NN-based SS selects the least
number of variables comparing to that of ER-based and
MR-based SS (referring to Tables II, III and Fig. 2), its VM
conjecture model still achieves superior accuracy. This result
reveals that NN-based SS can select the most critical variables
among the original ones to prevent unimportant variables from
affecting the VM conjecture accuracy [7]. Moreover, by
applying the Pair-T hypothesis test [17], significant difference
of VM conjecture accuracy between the MR-based SS and
NN-based SS methods is verified.

Besides BPNN-I, the authors also apply SRNN as the
designated NN algorithm for all the experiments.
Experimental results show that SRNN can achieve the similar
results (as shown in Table V) as BPNN-I. Table V illustrates
that the MaxError s for the NN models of ER-based, MR-based
SS, and NN-based SS are 2.88%, 2.09%, and 1.84%,

respectively. And the MAPEs based on the NN models of
ER-based, MR-based SS, and NN-based SS are 1.12%, 1.04%,
and 0.96%, respectively.

The etching equipment for experiment has three chambers.
Different chamber has different physical property. Therefore,
those three chambers should have their own VM conjecture
models as far as VM conjecture accuracy is concerned. The
experimental results mentioned above belong to one of the
three chambers. In fact, experiments of the other two
chambers have also been performed in this work and similar
results are obtained. Therefore, it is concluded that the NN
model created by the selected variables of NN-based SS can
indeed achieve better conjecture accuracy than that of
MR-based SS.

V. SUMMARY AND CONCLUSIONS

An advanced key-variable selecting method called
“NN-based SS” for enhancing VM conjecture accuracy is
proposed in this paper. An etching process of semiconductor
manufacturing is selected as the illustrative example to test
and compare the VM conjecture accuracy of the ER-based,
MR-based SS, and NN-based SS methods. BPNN-I are
adopted as the designated NN algorithm for creating the NN
model of NN-based SS and MR-based SS and the VM
conjecture models. Test results show that the NN models
created by the selected variables of NN-based SS can achieve
better VM conjecture accuracy than that of ER-based and
MR-based SS. Besides, SRNN has also been tested and been
proven to be able to achieve similar results as those of
BPNN-I. Therefore, to enhance the VM conjecture accuracy,
it is recommended to adopt the NN-based SS as the
variable-selecting method for creating the NN-based VM
conjecture models.
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