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Abstract

This research considers the location and routing problem for two obnoxious facilities. One obnoxious
facility is given and existing and the other obnoxious facility needs a new site to be located. Both
obnoxious facilities are served as two independent depots which involve vehicle routings to be
arranged. A mathematic model is developed first by considering the compensation cost and the vehicle
routing cost. A heuristic algorithm is then proposed to solve the location problem and vehicle routing
problem simultaneously. Three experiments focused on location are conducted for decision making: (a)
the impacts of increasing compensation cost, (b) the impacts of increasing transportation cost, and (c)
the suitable allocation of service capacity for both obnoxious facilities. It is believed that the
experimental results are useful for management decisions and future applications.

Keywords: Location Problem, Obnoxious Facility, Compensation Cost, Vehicle Routing Problem.

1. Introduction

A traditional location problem can be easily solved according to different objective functions. If a
location problem and a vehicle routing problem (VRP) come together, the solution approach becomes
more complicated. Most of these combined problems in the past are based on single depot to develop
vehicle routings. Solution of the combined problem should include a suitable location for the depot and
suitable routings regarding the depot, as indicated in Figure 1(a). In the real world situation, one depot



may be extended to two depots since service requirement increases. This is an interesting topic which
we will further discuss in this paper.

An obnoxious facility or undesired facility can provide service or benefit to its users, however, it will
also have undesired effects on the people or environment near by. Typical obnoxious facilities include
waste treatment station, chemical plant, nuclear power plant, etc. In general, obnoxious facilities
produce pollutions in different types such as air, water, noise, or even radiation pollution. Location of
obnoxious facility tends to near the boundary of the feasible region by considering the objective of
maxi-sum or maxi-min criterion (Rodriguez et al. 2006). If the location problem combines a
transportation problem, the obnoxious facility serves as the depot of this transportation system. The
objective function should take into account environment impact and transportation cost, simultaneously.
The solution of this problem tries to balance the environment impact and transportation cost.

This research investigates two obnoxious facilities and the associated vehicle routing problems. One
facility is the existing facility with fixed location and service capacity. The other is a new facility to be
located. Both obnoxious facilities are served as depots for the vehicle routing problem. This research
focuses on (1) locating the new facility and (2) arranging vehicle routings for both, existing and new,
facilities at the same time. A conceptual vehicle routing problem with two obnoxious facilities is
presented in Figure 1(b). To balance the transportation cost and the bad impact on the new obnoxious
facility is the major concern of this research. In addition, the bad impact will be represented by the
“social cost” which should be further defined.
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Figure 1 The location problem and vehicle routing problems

2. Literature Review

In this section, the reviewed papers focus on (1) the impacts of obnoxious facility measured by
different cost items and (2) solution approach for the location routing problems.

2.1 Social Cost

Researches in Taiwan found that a obnoxious facility will devaluate the prices of building and land
near this facility. In addition, pollution of obnoxious facility will cost higher medical expense which is
also proportional to the distance between the facility and the residence near by. Some researchers
further indicate that the compensation cost is closely related to distance and capacity (scale) of the
obnoxious facility. Based on previous findings, we define a special cost item, called the social cost, to
represent all costs related to the bad impacts of a obnoxious facility. The social cost is proportional to
distance and population. Concepts of the social cost are based on the following two reasons: (1) Shorter
distance between the obnoxious facility and residence will cost higher social cost. (2) Higher density of
population will increase the social cost. The detailed definition of social cost is given in section 3.2.



2.2 Location and Vehicle Routing Problem

The genetic algorithm (GA) had been used to solve vehicle routing problems and the results show in
good solution quality within short time. Yao applies the tabu search (TS) using three types of initial
solution and the neighborhood approach shows the best result. In addition, the internal and external
exchanges are also tested. Tuzun and Burke designed a two-phase tabu search to solve location routing
problem. This approach can generate the solution better than other heuristic algorithms. Wu (2002)
suggests the simulated annealing algorithm to solve the multiple depots vehicle routing problem.
Solutions include the optimal number of depot, location of depot, and dispatching of vehicle routings.

In this research, a mathematical model of location vehicle routing problem is developed based on two
obnoxious facilities. Two searching heuristics, i.e. GA and SA, are combined in the solution algorithm,
simultaneously. The genetic algorithm is used for solving the double-depot vehicle routing problem and
the simulated annealing algorithm is applied to locating the new obnoxious facility under the situation
of one existing facility. In addition, we will modify the neighborhood approach as the initial solution
and use the internal and external exchanges to improve vehicle routings.

3. Model Development

The following subsections will describe the problem area and given environment, the cost items and
assumptions, the variables and decision variables used, and the mathematical model.

3.1 Problem Statement

This research assumes that there are N service points given in a limited planar area. Each service point
produces fixed quantity of waste material which should be treated by the obnoxious facilities through
the vehicle transportation system. One existing obnoxious facility is fixed in the current planar area and
it serves as a treatment plant for waste material as well as the depot for waste material in the
transportation system. This existing obnoxious facility has a fixed and given service capacity to treat
the waste material for all service points, as indicated in Figure 1(a). The problem comes to this research
when the existing service capacity is not enough to serve all service points. A new obnoxious facility is
planning to build in this planar area, which also increases the total service capacity to meet new service
requirement for all service points. In this situation, the problem of this research will focus on: (1) the
location for the new obnoxious facility (as indicated in Figure 2(a) and 2(b)) and (2) the vehicle
routings for the two depots, i.e. the existing and the new obnoxious facilities (as the examples indicated
in Figure 3).
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Figure 2 Locations for existing facility and new facility
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Figure 3 Possible alternatives for two-depot vehicle routing problem

By carefully observing the situations in Figure 3, a few interesting comments can be made which
should be further investigated in this paper: (1) Different locations for the new obnoxious facility will
cause different degrees of impact on this limited planar area. (2) Different locations for the new
obnoxious facility shall rearrange the service areas for both two depots. (3) Different locations for the
new obnoxious facility shall re-dispatch vehicle routings. (4) The objective for the transportation
system and the objective for the environment impacts (location issues) are conflicts in this research. A
compromised solution for both objectives is necessary and unavoidable.

3.2 Cost Items and Assumptions

This research considers two cost items in the mathematic model, i.e. the transportation cost and the
social cost. The transportation cost comes from vehicle routings of two-depot transportation system and
the definition of transportation cost is same as the traditional vehicle routing problems. The social cost
defined in this research includes all extra costs caused by the bad impacts of the new obnoxious facility.
The typical social cost covers the following costs or expenses: the medical expenses, the devaluated
prices for building and lands, the preventive costs for pollutions, and the compensation costs for the
residence within the impacted area. Measurement of the social cost includes: (1) impact range
represented by distance and (2) population within the impacted area. In general, the quantified social
cost should be proportional to the distance and the population, simultaneously.

Figure 4 illustrates the calculation of social cost. Service point A in Figure 4 is one of the service points
within the highest impact range (i.e. the blue circle), therefore, the highest social cost will apply. In
addition, both the service point B and the service point C are impacted within the same impact range. In
this case, if service point B has higher population than point C, then the service point B causes a higher
social cost than the service point C. The service point D is out of the minimal impact range (i.e. the
green circle), therefore, no social cost will be considered.

The transportation cost and the social cost are closely related to the distance between population (the
service point) and the location of an obnoxious facility. In general concept, a longer distance do reduce
the social cost, however, a longer distance will also increase the transportation cost, simultaneously.
Figure 5 shows this concept by drawing cost curves for the social cost and the transportation cost.

Assumptions of this location and vehicle routing problem are summarized as follows:
1. Service capacities of the existing (original) and the new obnoxious facility are given and known.
The total service capacity is equal to the total service requirement.
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Location of the existing obnoxious facility is given, fixed, and known.

The social cost caused by the existing obnoxious facility is fixed and known, therefore, this cost
will not be considered in the mathematical model of this research.

Location of each service point, population of each service point, and the quantity of waste material
produced by each service point are given, fixed, and known.

Each service point can be served by one vehicle once in one route only.

Loading capacity of each vehicle is all the same. The loading capacity is fixed, given, and known.
Over loading is not acceptable for each vehicle.

One vehicle serves one route and one route is served by one vehicle only. In each route, a vehicle
should start from an obnoxious facility (depot) and it will come back to the same depot at the end of
this route. Overlapped-zone transportation is avoided.

Euclidean distance is used in all distance calculations.

Basic unit of the social cost, transportation cost per unit distance, fixed cost of vehicle are fixed,
given, and known.

All service points and all obnoxious facilities are located within a limited planar area.

The social cost is defined and calculated by considering the population of service point and the
distance from the service point to the new obnoxious facility.

3.3 Mathematical Model

This subsection proposes a mathematic model for the single location and double depots vehicle routing
problem. The basic idea of this model comes from the model developed by Wu (2002) and the model
has been modified to fit the two-depot environment in our study. The objective function of this model
is to minimize both the social cost and the transportation cost. The variables and decision variables are
defined as follows:

S <

A set of all possible locations for the new obnoxious facility in the feasible planar area

A set of all service points

A set of all activated vehicles

Index of obnoxious facility. k=1 represents the existing obnoxious facility. k=2 represents the new
obnoxious facility.

Index of vehicle or index of route

Service point ID

. Distance from service point i to service point j. i =0 or j =0 represent the point of obnoxious

facility and the depot for waste material transportation system



: Transportation cost per unit distance, a constant
Social cost per person, a constant
v, : Foxed cost of one vehicle, a constant
Q,: Quantity of waste material produced by service pointj, jeJ -
P;: Population of service pointj, jeJ -
v : Maximal loading capacity of a vehicle, a constant
F“: Maximal capacity of obnoxious facility k , k=1, 2 -
u(j) : Weighting factor of social cost for service pointj, jeJ o

g [ R
ﬂJ_W <R <,

21

For the cases of Rj>r,,then (1 (j)=0
R : Euclidean distance from service point j to the new obnoxious facility,

R, :|:(XJ B FXZ)Z +(yj B FYZ)ZT/Z

where: (F,,, F,,)is the coordinates of the new obnoxious facility. (x;, y;) is the coordinates of the

service pointj, jelJ
Maximal impact range represented by the minimal radius r. The highest weighting factor W,

applies when the range is shorter or equal to the distance r,.
r,.  Minimal impact range represented by the maximal radius r,. The lowest weighting factor W,

applies when the range is between distance r, and r,.

1

z,: If the location i is activated as the new obnoxious facility, then z =1. Otherwise, z =0.
X . If the service point j is serviced by vehicle v assigned to the obnoxious facility k (k =1, 2) as the

-

depot, then X' =1. Otherwise, X =0.

Y“: If the path segment from service point i to the service point j is serviced by the vehicle v (vveV)
assigned to the obnoxious facility k (k =1, 2), then v_:=1. Otherwise, Y, =0.

v': If the vehicle v (route v) is assigned to the obnoxious facility k (k=1, 2), then v'=1. Otherwise,
v =0.

A minimized mathematical model and the associated constraints are developed as follows:

The objective function:

Minimize [ZZPCX(ijy(j))xzi}[zii D, XY, [+Vex 3TV (1)
iel jed k=1 i=0 j=0veV k=1veV
Subject to:
D XExQ <V, weV k=1,2 (2)

j=1



Y'-3v =0 j=0,1,2, ...n wev k=12 3)

n
i=0 i=0

injvzl jeld (4)
ZVZZJ:QJ_ x X\ <F' k=1,2 (5)
Zzi=1 (6)
Svis0 k=1,2 7)
z=1lor0 iel (8)
X' =lor0 jeJ wveV k=1,2 9)
Y:=1o0r0 i=0,1,2,..,n j=0,1,2,..,n weV k=12 (10)
Vi=lor0 wveV k=1,2 (11)

The objective function of this research is indicated in equation (1) which has three terms. The first term
represents the social cost which is caused by the new obnoxious facility. The social cost is defined by
the population and the distance. The second term is the cost of vehicle routing which is proportional to
the distance. The third term is the fixed cost for the vehicle which is activated. Equation (2) indicates
that overload is prohibited in each route. Equation (3) shows that a vehicle arrives one service point and
the same vehicle should leave this service point. Equation (4) restricts each service point is served by
one vehicle only. Equation (5) restricts the maximal service capacity of each obnoxious facility. Only
one location can be selected for the new obnoxious facility, which is indicated in equation (6). For each
obnoxious facility, at least one vehicle routing should be activated as indicated in equation (7).
Equation (8), (9), (10), and (11) limit the decision variables to be 0 or 1.

4. Solution Algorithm

A heuristic algorithm is developed for solving the proposed problem. The proposed algorithm
combines both the genetic algorithm and the simulated annealing algorithm simultaneously. The
genetic algorithm is used to solve the vehicle routing problems for both facilities and the simulated
annealing algorithm is used to solve the location problem for the new obnoxious facility. The Figure 6
presents a general logic of this proposed algorithm. The challenge of this solution algorithm is the
efficiency of computation, since vehicle routings should be re-dispatched for both obnoxious facilities
when a new location is found.

This algorithm consists of three major subroutines: construction of an initial vehicle routings,
improvement of vehicle routing, construction of initial location, and improvement of location. The
initial location is randomly generated and the initial vehicle routings are designed by using the nearest
neighborhood approach. The genetic algorithm and the simulated annealing algorithm are applied in the
improvement of vehicle routing and the improvement of location, respectively. The following
subsection will describe each part in details.
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Figure 6 A general logic of the solution algorithm

4.1 Construction of an Initial Vehicle Routings

Based on the nearest neighborhood approach, the procedure of initial routings can be developed as
follows:

Step 1: Number service point from 1 to N and from a assignment set A.



Sept 2: Select a service point i from the set A, which has the shortest distance from the obnoxious
facility to the service point i. The point i will be the first point to serve in the first route. Delete
the point i from the set A.

Step 3: Select a service point j from the set A, which has the shortest distance from service point i to
point j. The point j is the next point to serve in the current route. Delete point j from the set A
and seti = .
Repeat step 3 until the loading quantity of current vehicle to the limit.

Step 4: Start the next route by selecting a service point j from the set A. The point j has the shortest
distance between j and i. The point j is the first point in the current route. Delete point j from
the set A and seti = .

Step 5: Repeat step 3 and step 4 until all service points have been assigned to the routings.

4.2 Improvement of Vehicle Routings

This research applies the genetic algorithm to the improvement of the vehicle routings. The
improvement process is described as follows:

Step 1. Setup parameters of genetic algorithm.

Step 2: Initialize population.

Step 3: Calculate the value of fitness function.

Step 4: Retain, mate, and mutate the string of genes.

Step 5: Repeat step 3 and step 4 until the stopping criteria is reached.

4.3 Improvement of Location

In this research, the location is improved by the logic of the simulated annealing algorithm. The general
procedure can be described as follows:

Step 1: Check the starting condition: the current location is confirmed and the current vehicle routings
for this location have been decided by the genetic algorithm.

Step 2: Generate a new feasible location and arrange vehicle routings.

Step 3: Calculate the objective function value for the new location.

Step 4: Check the acceptability for the worse location.

Step 5: Check the temperature reduction.

Step 6: Repeat step 1 to step 5 until the stopping criteria is reached.

5. Numerical Example and Analysis

In this section, a numerical example is tested and verified by using the algorithm developed in section 4.
Three experiments are also conducted by considering impacts of different social costs, different
transportation costs, and different allocation of service capacity. Subsection 5.1 describes the example
problem and the solutions in details. The following three subsections describe three experimental
results with a short discussion.

5.1 Basic Data and Solution of the Example Problem
This example problem contains 50 service points located in the predefined and limited area, as

indicated in Figure 7. The coordinates of each service point, quantity of waste material generated by the
service point, and the population of each service point are summarized in Table 1. The detailed



description of these service points are described as follows:

1. Two obnoxious facilities and all service points are located within the square: (0, 0), (0, 100), (100,
100), and (100, 0). 5 groups of service point spread this area.

2. Quantity of waste material generated by each service point ranges from 20 to 40. The population of
each service point ranges from 50 to 100.

3. The existing (old) obnoxious facility locates at (15, 20).

4. The service capacity of the new obnoxious facility is 40% of the total capacity. The service
capacity of the existing obnoxious facility is 60% of the total capacity.

5. The loading capacity of a vehicle is 100. The fixed cost of a vehicle is 15 and variable cost per unit
distance is 5.

6. The maximal impact distance of social cost is 30 or less and the weighting factor within this range
is 2. The minimal impact distance is 50, therefore, the medium impact ranges from 30 to 50. The
medium weighting factor within this range is 1. If distance is over 50, no environment impact
applies. The weighting factor is 0 for this case. Figure 7 indicates this concept.

The initial location of the new obnoxious facility is located at (36, 24) which generates 3,096 as the
initial social cost. The initial transportation cost for both the existing and the new facilities is 10,849.
The initial total cost is 13,945 which include the social cost and the transportation cost.

After the solution process, the new obnoxious facility is relocated to (84, 65), as indicated in Figure 7
and the total cost reduces to 10,896 (i.e. 2,354 for the social cost and 8,542 for the transportation cost).
The total cost reduction reaches 21.85%. At final location of the new facility, Figure 8 (a) and (b)
indicate the initial vehicle routings and the final vehicle routings. In this final location, there is a 9.97%
improvement from the transportation cost view point.

5.2 Impact of Different Social Costs

This subsection tests several special cases for “what happens if the social cost increases”. The analysis
and discussion are focus on the impact of the location for the new obnoxious facility. Five different
social costs ranging from 100% (i.e. the current cost) to 1000% (i.e. 10 times of current cost) will be
tested by the solution algorithm proposed in section 4. The unit transportation cost will keep the same
in all cases. Table 2 indicates the basic data of each case including the increasing percentage of the
social cost, the weighting factor for the maximal impact distance, and the weighting factor for the
minimal impact distance. Since each case will be independently tested 5 times, the average total cost
including the social cost and the transportation cost is drawn in bar charts as indicated in Figure 9.
Figure 10 plots the locations of the new obnoxious facility for each case, including 5 independent runs.

In general, cost data shown in Figure 9 indicates that the social costs are proportional to the increasing
percentages. By observing the locations in Figure 10, a significant trend can be found: when the social
cost increased, the locations tend to move towards the corners or edges of the feasible area. It also
represents the impact of social cost is greater than the impact of transportation cost in this case.
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Table 1 Basic data for 50 service points

ID
Type

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

X axis

36.0

49.5

39.2

5.3

84.1

96.3

87.4

86.5

37.3

80.5

88.3

81.6

81.6

74.2

90.8

32.2

91.7

51.2

58.1

6.7

81.6

36.7

17.3

49.8

54.2

Y axis

34.1

17.6

90.9

97.3

29.2

31.1

30

8.4

60.3

96.3

87.9

66.7

19.9

46.9

67.4

97.3

33.6

11.9

29

45.6

9.6

65.5

41.2

27.3

88.9

Quantity

36.0

24.0

28.0

29.0

21.0

35.0

40.0

27.0

25.0

21.0

32.0

26.0

25.0

32.0

24.0

24.0

29.0

37.0

21.0

22.0

34.0

28.0

33.0

21.0

39.0

Population

51.0

61.0

87.0

99.0

57.0

71.0

82.0

99.0
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Table 2 Five cases of different social costs

Case ID (A (B) ©) (D) (E) (P
Social Cost 100% | 120% | 150% | 200% | 500% | 1000%
Increasing Percentage
Weighting Factor for
Maximal Impact Distance 2 24 3 4 10 20
Weighting Factor for
Minimal Impact Distance 1 1.2 1.5 2 > 10
Remark: * represents the original case with no increasing of social cost.
ESocial cost B Transportation cost ETotal cost
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Figure 9 Total costs (social cost and transportation cost) for increasing social costs
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Figure 10 Locations of new obnoxious facility for different social costs
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5.3 Impact of Different Transportation Costs

This subsection will focus on the impact of transportation cost when the unit distance cost increased.
The increasing energy cost is the hot issue in the current global energy environment. We evaluate 5
levels of unit transportation cost from 110% to 150% as indicated in Table 3. Case (A) is the base line
with no increasing of unit transportation cost. Calculation and definition of the social cost will keep the
same in all cases. In each case, 5 independent runs are executed and the averaged total cost including
the social cost and the transportation cost is drawn as the bar charts in Figure 11. Figure 12 plots the
locations of the new obnoxious facility for each case, including 5 independent runs.

Data from Figure 11 indicates that: (1) the social cost does not change significantly when the unit
transportation cost increased and (2) the transportation cost is proportional to the increased unit
transportation cost. For locations of the new obnoxious facility, Figure 12 shows no significant changes.
Most of the cases, the X axes of new location are ranging between 75 to 90 and the Y axes of new
location are ranging from 50 to 70. In this case, the changes of unit transportation cost do not vary
location of the new obnoxious facility. This observation may not be still true in other cases.

Table 3 Five cases of different unit transportation costs

Case ID (A) (B) (C) (D) (E) (F)
Increasing Percentage of 0 0 0 0 0 0
Unit Transportation Cost 100% 110% 1209 130% 140% 150%
Unit Transportation Cost 5.0 55 6.0 6.5 7.0 75

Remark: * represents the original case with no increasing of transportation cost.

E Social cost

B Transportation cost
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Figure 11 Total costs (social cost and transportation cost) for increasing transportation costs
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Figure 12 Locations of new obnoxious facility for different transportation costs

5.4 Impact of Allocation of Service capacity

In the original example problem, we assume that the capacity of new obnoxious facility is fixed on
40% of the total service capacity. This constraint may be relaxed in this subsection. The experiment of
this subsection will further investigate different allocation of service capacity for both obnoxious
facilities. The capacity of new facility is ranging from 10% to 90% with 10% increment in each case.
All cases are represented by case (A) to case (1) in sequence. The total service capacity will keep the
same in all cases, i.e. in 9 different cases. In each case, 5 independent runs are executed and the
averaged costs are plotted as the bar charts in Figure 13. Figure 14 plots the locations of the new
obnoxious facility for each case, including 5 independent runs.

By observing the variation of total cost from Figure 13, the total costs are different due to different
allocation of service capacity. In this example problem, the near optimal allocation of capacity for the
new facility occurs between 30% to 40% of total capacity. Figure 14 further implies a trend that when
the capacity of new facility increases, the locations of the new facility tend to move from the up-right
corner towards the bottom-left corner, i.e. almost the direction of the existing obnoxious facility. This
phenomenon seems reasonable to explain: when the location with higher capacity, it should be as close
to the center of service points as possible.

6. Conclusions

This research proposes a model based on the new single location problem and the double-depot vehicle
routing problems of two obnoxious facilities. A heuristic algorithm using genetic algorithm and
simulated annealing algorithm is proposed for solving this complicated problem. A numerical example
is also used to demonstrate the effectiveness of this solution approach. Three experiments are
conducted by considering changes of social cost, changes of unit transportation cost, and allocation of
service capacity. In general, the experimental results indicate that the proposed model and solution
algorithm are useful in decision making for the location and vehicle routing problem of two obnoxious
facilities.
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Abstract

The primary objective of this paper is to propose a framework for aftermarket condition-based
maintenance (CBM) driven field service planning and scheduling. Aftermarket operations
represent all the maintenance, repair, and overhaul (MRO) services. As part of aftermarket
operations, an integrated CBM and field service management system is a vital competitive factor
for providing effective MRO services. The ability to continuously monitor the equipment data on
current health conditions as well as to optimize field service operations based on the equipment
health data is essential. Addressing the unique characteristics presented in managing aftermarket
operations, the proposed framework renders an innovative approach to intelligent field service
management based on large-scale prognostic data on critical equipment health conditions.
Specifically, the proposed framework focuses on an integrated field service automation solution
by synergizing data-mining enabled CBM, pre-scheduling field service job planning and
clustering, and multi-criteria field service scheduling.

Keywords: aftermarket condition based maintenance, field service planning, clutering, and
scheduling.



1. Introduction

The primary objective of this paper is to propose a framework for aftermarket condition-based
maintenance (CBM) driven field service planning and scheduling. The key areas underlined in
this paper include the design and modeling of integrated structural health monitoring (SHM),
condition-based maintenance (CBM), and field service automation. A Web-based three-stage
intelligent maintenance (3S-IM) model is proposed for integrated SHM/CBM as well as
aftermarket field service automation. The 3S-IM model renders an innovative approach to
intelligent maintenance systems design on large-scale data acquisition, mining, and diagnosis of
critical equipment health conditions for structural anomaly detection. Another thesis of the
development of this model is to synergize optimization theories, mathematical modeling
techniques, and advanced information technologies (e.g., fuzzy logic and knowledge
management) in the area of field service management.

Historically, manufacturing enterprises have focused mostly on the supply chain management of
designing and manufacturing physical products while paying little attention to the so-called
“forgotten supply chain” of their aftermarket (or called post-sales) businesses. Aftermarket
businesses represent all the maintenance, repair, and overhaul (MRO) services that are either not
included in the original equipment sales or not delivered by the original equipment
manufacturers (OEMS). For the post-sales service intensive enterprises (e.g., Boeing, Xerox,
United Technologies Corporation, and Caterpillar, Inc.), the profit margin of their MRO
businesses is usually much greater than that of original goods or equipment sales.

With combined higher net margins and decreased capital requirements of the post-sales service
operations, greater financial value can be significantly created. As a prime example, the Otis
Elevator Company of United Technologies Corporation generated about 50% of its revenue from
post-sales services and repairs while creating only 35% from installation of escalators and
elevators. For Otis, installing new equipment often has relatively modest impact on its market
capitalization. Every equipment installation typically guarantees a steady revenue stream
generated from required MRO services following the installation. In addition, sales from MRO
services are generally considered less cyclical or seasonal than original equipment sales. In other
words, post-sales services are usually not subject to market-specific or industry-specific
seasonality, thus leading to greater financial value for the companies. As a matter of fact, Wall
Street normally places higher value on the service lines of business for those world-class post-
sales service intensive organizations, such as Otis. As a result, in today’s complex and
competitive marketplace, managing the post-sales service supply chain is no longer an option for
many companies. Reliable and superior post-sales service is extremely important to establishing
a long-term customer relationship and sustaining a competitive advantage. As more and more
companies race to boost their field service management capabilities and performance, it is
imperative to effectively manage and optimize this historically neglected area in supply chain
management—the post-sales service operations.

As part of aftermarket service supply chain management, an integrated structure health
monitoring and condition-based maintenance system is a vital competitive factor for those
industries that provide MRO services for their equipment such as aircrafts, elevators, medical
equipment, and networking equipment. The ability to continuously update the equipment data



on current health conditions and monitor structure physical changes is crucial to those companies
to differentiate themselves from the rest. In addition, the ability to plan and optimize field service
operations based on the equipment health prognostic data is essential. Among the field service
operations, service territory planning and field workforce scheduling are two of the most critical
tasks for improving the quality of field service management. In reality, these tasks are often very
challenging due to a number of interweaved factors and unique characteristics presented in
managing field services. First, there is profound complexity caused by the dynamic, demand-
responsive nature of field service operations. Often times, the magnitude of complexity can make
the decision-making processes in scheduling more complex than those in manufacturing settings.
Second, to achieve an optimized workforce scheduling solution, the dispatcher must incorporate
different types of service work into dispatching decisions.

From a broader perspective, the primary types of field service work include planned maintenance
orders and emergency service calls. Planned maintenance is typically performed at regular
intervals on the serviced units through service contracts. Emergency service calls are unplanned
service requests due to equipment failure that may arise randomly over time. In other words,
emergency service demand, or so-called, stochastic demand, is primarily driven by unpredictable
event probabilities (e.g., equipment failures). In essence, both work types have very different
scheduling requirements. Combining these two work types in one optimized scheduling solution
presents a highly dynamic and challenging problem. In real-life scenarios, adding to the
considerations of other business rules (such as terms in the service contracts) and constraints
(e.g., spatially separated service sites, travel times, expiration times, and field technician skill
requirements) can make the task of field service scheduling far more complicated than that of
production scheduling. Due to the effect of “unbuffered demand,” unlike production work
orders, it is impossible to queue the field service orders into a master production schedule with a
given frozen time fence. Furthermore, it is not feasible to store service outputs in the form of
“finished goods inventory,” as those in the physical goods production environment. Finally,
planning necessary service parts and handling returned items are some notoriously daunting tasks
for those OEMs or aftermarket organizations to manage. Lacking a rigorous service resources
planning mechanism usually leads to significant supply and demand imbalances across field
service depots. Uncertainty and bias involved in service parts demand forecasting and
replenishment will further plague the effectiveness of scheduling tasks.

To address the dynamic nature of the aftermarket MRO operations, this proposal presents a
preliminary version of a Web-based three-stage intelligent maintenance (3S-IM) model for
integrated SHM/CBM as well as aftermarket field service automation. The proposed 3S-1M
renders an innovative approach to intelligent maintenance systems design on large-scale data
acquisition, mining, and diagnosis of critical equipment health conditions for structural anomaly
detection. Another thesis of the development of this model is to synergize optimization theories,
mathematical modeling techniques, and advanced information technologies (e.g., fuzzy logic and
knowledge management) in the area of field service management. This synergy has presented an
unprecedented territory of challenge, opportunity, and innovation.



2. The 3S-1M Model

Maintenance is typically performed in two ways: preventive maintenance and corrective
maintenance. With the first approach, some pre-maintenance actions are taken to prevent or
minimize equipment breakdown by predicting possible faults. With corrective maintenance,
maintenance is performed after a breakdown or an obvious fault has occurred. The preventive
maintenance can be further divided into two categories: Condition Based Maintenance (CBM)
and predetermined maintenance. The predetermined is scheduled in time, while CBM can have
dynamic or on request intervals. In essence, CBM is an approach that seeks high asset
availability and low maintenance costs by using equipment health conditions as a guide for
taking maintenance actions (Williams and Davies, 2002). The core R&D challenges for CBM
usually requires highly multi-disciplinary solutions focusing on system level issues. A potential
technical sweet spot involves developing the capability to confidently recognize the onset of a
failure process, and then to track and predict the evolution of that failure process to a point that
economic, engineering, or other business criteria determine if it is appropriate to repair or replace
the equipment or parts. To achieve this goal, improved intelligent systems capabilities, such as
data mining, are indispensable.

Specifically, the 3S-IM model focuses on implementing SHM/CBM and intelligent field service
solutions in four areas: (1) integrated SHM/CBM capabilities enabled by data mining, (2) pre-
scheduling service territory and field service planning by mathematical programming and service
job clustering techniques, (3) multi-criteria field service scheduling and post-scheduling systems
learning using fuzzy logic, and (4) web-centric information sharing and knowledge management
for the purpose of enhancing service supply chain performance and integrating and streamlining
the entire supply chain operations.

As shown in Figure 1, the preliminary version of the proposed 3S-IM model consists of the
following three interrelated stages:

e Stage I: Integrated structural health monitoring and condition-based maintenance system

e Stage II: Pre-scheduling field service territory planning and task clustering

e Stage IlI: Fuzzy logic based field service scheduling and post-scheduling systems
learning

These three stages involve two important aspects of MRO operations: preventive maintenance
and corrective maintenance. Stage | deals with “before-the-facts” preventive maintenance
through prognostic SHM/CBM capability. With the notion of “prediction and prevention,” the
primary goal in the first stage is to sustain near-zero breakdown performance and thus maximize
the degree of preventive maintenance. In other words, it strives to minimize emergent service
requests and subsequent corrective maintenance efforts. Stages Il and Il primarily tackle the
“after-the-facts” corrective maintenance tasks. In response to the alerts, maintenance plans, and
work scope generated from the SHM/CBM system, the major tasks in Stage Il are to plan,
balance, and allocate the service resources in advance and undertake necessary pre-scheduling
work, such as service territory assignment and service job clustering. Consequently, the resource
utilization can be optimized. Based on the maintenance plans created from the second stage, the
third stage involves fuzzy logic based field service scheduling and dispatching. Stage 11 also



involves the system self-learning capability for deriving and incorporating more new facts and
rules on preventive MRO operations.
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Figure 1. The 3S-IM Model

Field service organizations have been troubled by the inefficiencies engendered by loose
integration and communications among different field service resources and operations. To
achieve seamless and zero-latency connectivity, seamless integration of the field service
processes and information in these three stages is the key tenet of the proposed model. A web-
centric information sharing and knowledge management portal is developed for enhancing
service supply chain performance and integrating and streamlining the entire supply chain
operations. The following sections describe the three stages of the proposed 3S-IM model in
detail.

2.1  Stage I: Data mining-based SHM/CBM

This stage identifies and develops the key technical capabilities for generic SHM/CBM
applications, including automatic patterns extraction and maintenance schedule planning.
Successful SHM/CBM implementations need the generic data mining capability for applications
to a broad range of data sets and models. Data mining is an advanced data processing and
analytical technique to extract implicit, previously unknown, and potentially useful information
and knowledge as well as discovering hidden patterns from a large group of data by using



machine learning, statistical models, mathematical algorithms, and visualization techniques
(Adriaans and Zantinge, 1999; Witten and Eibe, 2005).

In addition, integrating generic knowledge discovery capabilities into SHM/CBM systems entails
the establishment of specific data sets and models about the systems under maintenance. Another
objective of the technology developed in this stage is to achieve optimal field service planning
prior to actual occurrences of equipment fault so as to minimize overall costs (i.e. costs of
maintenance and down-time). Still another technology development goal is to bootstrap
maintenance actions and equipment utilization with the diagnostics algorithms developed in this
stage. This enables a learning process that improves cost reduction over time, given that
scheduling achieved optimality is tied to the condition forecast accuracy. Figure 2 synopsizes a
conceptual diagram of the proposed data mining-based SHM/CBM system:

e Equipment Model: This model includes equipment wear data, diagnostics, and fault
detection algorithms. The data on equipment wears show how much and the conditions in
which the equipment is used. There are two contributions to wear: one is stimulated by a
wear model (physics-based or black box in source) and the other by a random event
generator. Both these processes, along with performed maintenance actions, are
subsequently integrated into an overall condition. The wear data generated from the wear
model and condition monitoring data from fault detection and prognostics algorithms are
then imported into the maintenance condition database and further integrated in the
maintenance condition warehouse for future uses.

e Prognostication Model: This model includes three prognostication components: (1)
estimation of remaining useful life (or time to failure or time for degraded performance)
based on the condition of the equipment; (2) development of confidence levels
(uncertainty estimates); and (3) recording an audit trail of how the estimate and
confidence level are obtained. In developing these three parts of prognostication models,
quality diagnostics and sensor information are considered imperative. Data is thus needed
not only for use by prognostication models, but also to train and validate the models.

e Data-Mining Model: Receiving data from the equipment and prognostication models,
the data mining engine extracts an extensive set of features and patterns that describe
each maintenance and equipment wear condition, and generates rules that accurately
capture the behavior of maintenance activities. In other words, it can prescribe if the
equipment health in the monitored component, sub-system, or system has degraded.
Diagnostic records are then generated and fault possibilities are proposed. The diagnosis
should be executed based upon trends in the equipment health history, operational status,
and loading and maintenance history.

e Maintenance Schedule Planning Model: The maintenance scheduling policy utilizes
current and forecasted equipment condition patterns discovered from the data mining
engine, along with current and future costs of downtime, to generate an a preliminary
maintenance schedule. It contains an algorithm to convert equipment conditions into
work-scope. Work-scope is the bill of inspection, parts replacement, repair, and rebuild
actions which are required to tear down, refurbish, and rebuild the equipment under



maintenance to a given build standard. These models are refined using the results of the
maintenance action and the equipment condition history.
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Figure 2: Data Mining Based SHM/CBM System

2.2 Stage Il: Pre-scheduling field service planning and job clustering

Following the effort in Stage I, a work-scope listing all the required service jobs over a certain
period of time (e.g., a day) is generated. In the 3S-IM model, a scheduling job is a 3-way
assignment of “service jobs,” “resources” (service technicians, parts, tools, service vehicles,
etc.), and “time slots,” subject to business constraints (“hard” business rules) and objectives
(“soft” business rules). A service job may consist of a “cluster” of work orders, each of which
may be a series of tasks or procedures, performed on an equipment unit in a single on-site visit.
Relevant resources include field service engineers or technicians, transportations (e.g. vehicle),
communication devices (e.g. wireless personal digital assistants), parts and materials, and tools.
Service jobs are assigned a time slot to match the expected job duration, based on desired
performance criteria as well as given business constrains and objectives.

“Hard” rules are those constraints that cannot be violated in any conditions. For instance,
according to the agreed terms indicated in a specific service contract, no more than 3 hours of
overtime is allowed per day and the schedule must include a 1-hour rest break per shift. A



feasible schedule must satisfy all hard rules without any exception. On the other hand, “soft”
rules indicate preferences or objectives, such as “a particular Customer X is preferably serviced
by Technician Y” or “a technician should preferably not work beyond end of shift.” Any soft
rule can be relaxed or violated, but a “penalty” will be incurred.

Considering savings on travel time and set-up time, it may be beneficial to cluster some of the
service work orders as a pre-processing step to scheduling. For maximum resource efficiency
and utilization, all types of service work orders are properly grouped together by using two
clustering methods: distance proximity and time proximity clustering. With distance proximity
clustering, the work orders are clustered based on the geographical location of the equipment and
the proximity of the resources (mainly the field service technicians). To complement the distance
proximity clustering, a mathematical service territory modeling (MSTM) method is developed
for computing the expected distance and variance of distance as well as to predict the mean
travel time and mean response time over a specified geographical service area. Of great
economic significance, travel time is a crucial aspect of service territory performance modeling
since it can often save sizable direct costs by a fraction of travel time reduction. Travel time is
further affected by other integral factors, such as the territory shape and size, dispatching rules,
and equipment density. Response time is defined as the sum of queue time and travel time. The
mathematical model is constructed on the basis of evaluation of a number of imperative factors
regarding field service performance measures. The shape of a service proximity shape is defined
as a fan chart, shown as in Figure 3. With mathematical distance proximity modeling, both the
cases of “single-depot” and “multiple-depot” are considered. (A depot is a field service
management office that handles all service requests in a specific territory.) Typically, the travels
of field service can be divided into two categories: a round-trip travel from a central facility to
the failure location and a sequential-trip travel from one repair location to another.

As an example, a single-depot model considering only the sequential-trip travels is used to
illustrate how the service work orders are clustered, given the assumption of finite machines
distributed over a given service region. It is assumed that the closest available technician is
dispatched to a service request, which is at the foremost position in a queue within a certain
service territory. Since the technicians make sequential trips to the calling locations that are
distributed over a service region; therefore, the travel distance can be considered as between two
points (x1, y1) and (Xz, y»). The distance between these two points can be defined by two ways,
which are L; metric and L, metric.

L, metric: D =|x1—x2|+|y1—y2|
£
2

L, metric: D=[(x1—x2)2+(y1—yz)2]
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The expected distance and variance of distance of any two points (two equipment sites)
are then modeled with L, and L; metrics. The polar co-ordinate is used to indicate these two
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distance, E(d), and variance of distance, V(d), between the two given equipment sites with L,
metric are expressed as:

r,r,dr.dr,d6,d@g,
A2

R R ¢ ¢
E@)=] [ [ [ i’ +r -2nrcos(0, -0,
0 0 0 0

1 R R v 2 2
=— [ ndr[ rdr,| | \/rl +1, —2nr,cos(0, - 60,)d0,do,
A7 o 0 0% o

2

RORLO P rr
V(d)= | Ojojojo(rf +r2-2rr, cos(, —6’1))ﬁdr1drzd01d02 ~(E(d))

1 R R v 2 2
= ?J' 0 rdr, | 0 r,dr, | 0 | o(r1 + 12— 211, cos(0, - 6,)Hr,dr,d0,de,

With the embedded distance proximity clustering algorithm, the system will then cluster and
sequence the work orders into appropriate service jobs based on the calculated E(d) and V(d).
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Overall travel time for completing those service jobs can then be significantly reduced thanks to
work order clustering.

2.3 Stage Ill: Multi-criteria fuzzy logic based field service scheduling and dispatching

As a subsequent step, the third stage focuses on the tasks of scheduling service jobs with
available, qualified field engineers or technicians for the objective of minimizing total weighted
stress (tardiness). According to the pre-scheduling plans generated in Stage Il, a multi-criteria
fuzzy logic-based field service scheduling (MCFL-FSS) system is developed to adaptively guide
the selection of dispatching rules or scheduling procedures for different corrective maintenance
problems. By choosing an appropriate dispatching rule or scheduling procedure, near-optimal
and optimal solutions can be found.

2.3.1 Basic MCFL-FSS components
The MCFL-FSS system consists of the following interconnected components:

e Inputs to the Fuzzy Logic Engine: (1) service call patterns and clustered jobs, (2) field
service technician status on availability, proximity, skill levels, etc., (3) other service
resource availability (parts, tools, vehicles, etc.) and (4) performance criteria (travel time,
response time, tardiness, etc.)

e Scheduling Procedures: This component is a set of applicable scheduling procedures,
each of which is considered to be excellent for a given set of patterns of the service call,
maintenance plans, the technician status, and other set criteria. A database storing
expertise and observations is used to direct the selection of the scheduling procedures.
Usually the expertise and observations are represented in the form of fuzzy IF- THEN
rules.

e Fuzzy Logic System: This is the core of the scheduling system. After training, it is used
to dynamically guide the selection of scheduling procedures at different time point.

e Scheduling Procedure Selection Algorithms: This component is the scheduling
procedure selection process that chooses one of the predetermined scheduling algorithms
based on the inputs about the environment of service call and technician status.

e Simulation Results Evaluation: This component stores the simulation results and
previously running results. All the results are used to train the fuzzy logic system.

According to Wang (1997). the main notion of fuzzy logic is that many problems in the real
world are mostly imprecise and vague rather than exact. The effectiveness of the human brain is
achieved not only from precise cognition, but also from the process of fuzzy judgment and
reasoning. In general, fuzzy systems reason with a set of multi-valued data or so called fuzzy sets
(i.e., the sets of values between 0 and 1) instead of bi-valued sets or crisp sets (i.e., the sets of
value of 0 and 1). One of the advantages of fuzzy logic techniques lies in the fact that they render
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a “soft” decision, a value that describes the degree to which a pattern fits with a certain class,
rather than just a “hard” decision which indicates a pattern matches a class or not (Yen, 1999).
Recently, fuzzy logic and fuzzy systems have been successfully embraced in tackling various
real world problems, such as control systems and pattern classification problems. Some well-
known fuzzy systems are fuzzy-rule-base methods (Ishibuchi, 1992). fuzzy c-means (Bezdek,
1981). fuzzy k-nearest-neighbor (Bezdek, 1986; Keller, 1985). and fuzzy decision tree (Chang,
1977).

Given a fixed set of service requests, available technicians, and performance criteria (e.g.,
minimizing the total weighted stress), it is possible to find a schedule to optimize the
performance with respect to specific criteria. Nonetheless, for a variety of reasons, including
inevitable uncertainty in equipment breakdown and associated emergent service requests, it is
not feasible to completely attain the optimization objective. Hence, many of the scheduling
algorithms available today are mostly heuristic. In other words, these algorithms are based on
some simple rules, such as FCFS (First Come First Served) or NC (Nearest Call). Each of these
scheduling algorithms has distinct advantages over the others. In general, no single algorithm is
the best under all situations. To cover a wide variety of service call and technician situations, the
proposed scheduling system integrates a variety of scheduling algorithms, including FCFS (First
Come First Served), NC (Nearest Call), EET (Earliest Expiration Time), NSNC (Negative Slack-
Nearest Call), NCPS (Nearest Call with Positive Slack), and CTTET (Composite Travel Time
Expiration Time).

The fuzzy logic control decision network can be constructed automatically by learning the
training examples. By combining both unsupervised (self-organized) and supervised learning
schemes, the learning speed converges much faster than the conventional back-propagation
learning algorithm. The basic configuration of a fuzzy logic system with fuzzifier and defuzzifier
is shown in Figure 4.

y 4
X Fuzzy y
— | Fuzzifier ‘ Inference - Defuzzifier |—
Engine

i |

Fuzzy
Rules

Figure 4: Fuzzy Logic System
The function of the fuzzifier is to determine the degree of membership of an incoming input on

service demand in a fuzzy set. The fuzzy rule base stores a collection of rules representing the
fuzzy relationships between input-output fuzzy variables. The output of the fuzzy rule base is
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then determined according to the degree of membership specified by the fuzzifier. The fuzzy
inference engine calculates the rule’s conclusion based on its membership degree. Finally, the
defuzzifier is employed to convert outputs of the fuzzy rule base into crisp values.

2.3.2 Fuzzy logic reasoning and training process

This section describes the objective function of the scheduling problem, fuzzy logic reasoning
procedures, and training algorithms used in the MCFL-FSS system. First, the objective of the
scheduling problem is to minimize the total weighted stress, which is defined as follows:

S(k) = X [wqq;(k)+wt; (k) +w T, (k)]

ieC (k)
where

S(k) = stress for the schedule for the technician k .

gi (k) = queue time for the service call i when assigned to the technician k. (queue time is
the time from the point when a service call arrives to the system until it is
assigned to an available and qualified technician)

ti (k) = travel time for the service call i when assigned to the technician k.

Ti (k) = tardiness for the service cal i when assigned to the technician k.

Wq = parameter associated with queue time.

w; = parameter associated with travel time.

wr = parameter associated with tardiness.

As far as the practical procedure is concerned, the simulation results of service call and
technician features with the best scheduling procedure are evaluated. The result is represented as
a vector, ( (x1, X2, X3), ¥), where (X1, X2, X3) are the vector of the features, and y is the number of
a scheduling procedure. The scheduling procedures are numbered to facilitate the selection
process. Next, appropriate fuzzy rules are selected in terms of the field service features.

If the number of simulation results is not very large, the nearest neighborhood clustering
algorithm is used to train the fuzzy logic system. A selected step-by-step training algorithm used
in the 3S-IM model as follows:

Step 1: A fuzzy system with center average defuzzifier, schedule rule, singleton fuzzifier can be
expressed as follows:

sNoytexp(—(x-x')? /o)
SN exp( - (x-x")2 /o)

y=f(x;,X;,%3) =

where
N is the number of simulation results.

X = (X1, X2, X3), x' = (x,,x3,x3), andy is the number of the rule. o is design
parameter.
Step2: Starting with the first vector ((x;, x;,x3), x*) , establish a cluster center (x;, x;, x;) at

(x}, x, x}yand set AY(1) =y, BY(1) = 1, select a radius .
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Step 3: Continue the procedure with k™ vector ((xX, x%,x¥), y*), k=2,3, .... Suppose there are
already M clusters with centers (xlk‘ , x; , x:) k=1, ..., M. Computer the Euclidean distance of
(x;, x5, x¥) to these centers and find the smallest one.

Step 4: If the distance is less than r, then establish (x,, x5, x}) as a new cluster.

Step 5: The adaptive fuzzy logic system at the k™ step is constructed as follows:

T M AT (K) exp( —‘x—xi‘z/az)

f (X1, X5, X5) =

Zi'\ilBi(k)exp(—‘x—xi‘z/o-z)

Ifx = (xX, x5, xX) does not establish a new cluster, then A* (k) = A¥ (k-1) + y*, B¥ (k) = B* (k-1)
+1, here ik is the number of the nearest cluster; otherwise, increasing M by 1, and Al (k) = Al (k-
1), B' (k) = B'( k-1).

Step 6: Add fuzzy rules to the above fuzzy logic system as follows:
f(x)=af " (x)+Q-a)f, (X)

where f-(x) is a fuzzy logic system constructed from a fuzzy IF- THEN rule, and « € [0,
1] is a weight for incorporate the simulation results and fuzzy rules.

Through the fuzzy logic reasoning process, the MCFL-FSS system is capable of automatically
selecting the most appropriate scheduling algorithm based on the type of service call, technician
conditions and other resource availability, and given set of constraints and objectives. In
addition, the developed system is flexible enough to take other important factors, such as
proximity or current task occupancy, into consideration when determining which technician to
send. For instance, if the most qualified technician is 100 miles from the site or is occupied in an
emergency callback/repair job, the system should consider alternative technicians who might be
in closer proximity to the site and who could be more readily available.

3. Model Implementation and Essential Tasks

Six major tasks are identified to implement the proposed model, including (1) system
requirements definition and baseline establishment, (2) development of an information system
architecture, (3) evaluation of data acquisition methods/tools, (4) evelopment of structure health
data models, (5) development of large-scale simulation model for data transfer, interpretation,
and diagnosis as well as structural condition assessment, and (6) Demonstration and validation.

The first task emphasizes on system requirements definition to ensure that essential
functionalities of the proposed system are thoroughly captured. As an indispensable prerequisite
to this task, a detailed functional requirements document along with a baseline statement should
be developed. This document will consist of the formulation of essential system functions,
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assessment of dependencies among various system components, evaluation of alternative
solutions, estimation of value and risk associated with each alternative solution.

The subsequent task involves identifying information systems requirements and developing
information system architecture to support maximum availability, scalability, manageability and
performance of the proposed system. A holistic approach is to be adopted to balance all the high-
performance system requirements and to provide an e-service solution to the rigorous
requirements of the web-based service transaction and decision support systems.

To ensure a concrete understanding and proper assessment of how the system will operate, a test-
bed environment will be created to drive the simulation of the SHM/CBM as well as field service
planning and scheduling operations. A large-scale discrete event simulation model will be
developed to reflect the generic natures of the underlying problems. A real-time monitoring will
be performed to simulate a real-time rescheduling of resources as a response to unexpected
interruptions due to a number of possible scenarios. The developed test-bed environment will
help isolate and control for potentially confounding variables of a complex environment.

A baseline demonstration and a proof-of-concept demonstration will be made during the 12-
week residency. These two demonstrations will focus on the feasibility analysis by
demonstrating how implementation of the 3S-IM model. This demonstration represents a key
decision point for determining whether the top line goals can be reached and an indication of
how long this may take. Based on the information acquired from this demonstration, the level of
risk reduction achieved at the project mid-point will be quantified under the Collaborative
Innovation process, and a refined risk-reduced development plan will be formulated. The value
of the innovations accessible through continuation of the project will then be assessed to provide
a key decision point.

4. Expected Benefits and Intellectual Merits

This research has the potential to extend operations research, modeling and simulation
techniques, and information technology to an important economic sector, the aftermarket service
sector, that has been overlooked in the past. First, the research shall significantly contribute to
the fundamental theory and practice of condition-based maintenance and intelligent structured
health monitoring systems for improving the competitiveness and reliability of aftermarket
service enterprises. Additionally, this research will open a new area in condition-based
maintenance, intelligent structured health monitoring systems, and service supply chain
optimization, and e-service systems design. It will provide the foundation for introducing the
subject of integrated CBM/SHM in the supply chain management course, which is becoming an
important course in the curricula of many disciplines, such as industrial engineering,
manufacturing engineering, operations research, and information systems.

The next wave of value for many companies resides within their service supply chains. To be a
successful customer-driven company, an enterprise should go beyond delivery of better-quality
products to delivery of superior post-sales services. The CBM model and IM&HM system will
bring forth a significant impact on the aftermarket service industry as a whole due to the
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expected huge improvement of intelligent equipment health monitoring, service workforce
efficiency, increased overall utilization of resources, and flexibility to handle dynamic changes.
The research results can be further delivered to a broad range of companies in the aftermarket
service sector. The technologies and models developed in this research will enable corporations
to deliver higher quality and lower cost services. It is expected that these technologies will
eliminate significant inefficiency from the service and maintenance supply chain. Equipment
monitoring and maintenance logistics have long been implemented as costly and time consuming
point solutions, which illustrates the extensive scope of the opportunity and potential
applications of this proposed research.

5. Conclusions

Effectively managing and optimizing their service supply chains, on top of managing their
product supply chains, is critical for the companies to survive and success in this fiercely
competitive marketplace. Companies that strive to act upon this business wisdom can benefit
from the value and competitive advantage garnered by the best-in-class bellwethers in product
supply chain management, such as Wal-Mart, Toyota, and Dell Computer. The proposed 3S-IM
model will help a company excel from a merely equipment maintainer to a world-class service
enterprise by embracing expanded and integrated solutions for effective field service
management and resources planning. The proposed model will help facilitate a business
paradigm shift by driving new levels of overall cost and customer service performance in lieu of
selling more visits paid to maintain and/or repair the equipment.

References

Adriaans, P. & Zantinge, D. (1999). Introduction to Data Mining and Knowledge Discovery,
Third Edition, Potomac, MD: Two Crows Corporation.

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, New
York, NY: Plenum.

Chang, R. L. & Pavlidis, T. (1977). ‘Fuzzy decision tree algorithms’, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 7, No. 1, pp. 28-35.

Ishibuchi H., K. Nozaki, & H. Tanaka (1992). ‘Distributed representation of fuzzy rules and its
application to pattern classification’, Fuzzy Sets and Systems, VVol. 52, pp. 21-32.

Keller, J. M., Gray, M. R., & Givens, J. A.(1985). ‘A fuzzy K-nearest neighbor algorithm’, IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 15, No. 4, pp. 580-585.

Wang, L.X. (1997). A Course in Fuzzy Systems and Control, Prentice Hall, Upper Saddle River,
New Jersey.

Williams, J. H. & Davies, A. (2002). Condition Based Maintenance and Machine Diagnostics,
Chapman & Hall.

16



Witten, I. H. & Eibe, F. (2005). Data Mining : Practical Machine Learning Tools and
Techniques, Elsevier Science & Technology Books.

Yen, J. & Langari R. Fuzzy Logic (1999). Intelligence, Control, and Information. Prentice Hall,
Upper Saddle River, New Jersey.

17



	2008-05-25 出國報告01.pdf
	008-0068.pdf
	008-0087.pdf

