出國報告(出國類別:開會)

出席德國 IEC 第二屆國際 IGCC & XtL 技術研討會議及參訪西 班牙 Elcogas IGCC 電廠

服務機關:台灣電力公司 姓名:徐豪傑 職稱:主管成本 姓名代號:907042 派赴國家:德國、西班牙 出國期間:96年5月06日至96年5月17日 報告日期:96年7月5日

出國報告審核表							
出國報告名稱:出席德國 IEC 第二屆國際 IGCC & XtL 技術研討會議及參訪西班牙							
Elcogas IGCC 電廠							
	出國人姓名	職稱		服務單位			
徐豪傑		主管成本		台灣電力公司電源開發處			
出國期	期間:96年05月06日	至 96 年 05 月 17 日	報	告繳交日期: 95 年7月5日			
出 國 計 畫 主 辦 機 關 審 核 意 見層轉機關審核意見	 ✓1.依限繳交出國報 ✓2.格式完整(本文) ✓3.內容充實完備. ✓4.建議具參考價值 ✓5.送本機關參考或 ○6.送上級機關參考 ○7.退回補正,原因 次資料為內容 網登錄提要資料; ○8.本報告除上傳至; ○辦理本機關出國 ○於本機關業務督 □9.其他處理意見及; □1.同意主辦機關審 □2.退回補正,原因 □3.其他處理意見; 	告 必須具備「目地」、「過程」 研辦 :□不符原核定出國計畫 □內容空洞簡略 □電子 及傳送出國報告電子檔 出國報告資訊網外,將採 國報告座談會(說明會), 會報提出報告 方式: 該意見□全部 □部分 :		 □以外文撰寫或僅以所蒐集外 案未依格式辦理 □未於資訊 之公開發表: □「人進行知識分享。 (填寫審核意見編號) 			
說明:		同雄松明忙,了寻说去「		捕艇眼旁状去已			
`	出國計畫土辦機關即	層 特 筬 巤 時 , 个 斋 項 舄 「	廇	髀 [6] 爾爾[1] 西爾[1] 國[1] 西爾[1] 西[1] 西爾[1] 西[1] 西[1] 西[1] 西[1] 西[1] 西[1] 西[1] 西			

二、 各機關可依需要自行增列審核項目內容,出國報告審核完畢本表請自行保存。

三、 審核作業應於報告提出後二個月內完成。

行政院及所屬各機關出國報告提要

出國報告名稱:出席德國 IEC 第二屆國際 IGCC & XtL 技術研討會議 及參訪西班牙 Elcogas IGCC 電廠

頁數 48 含附件:□是■否

出國計畫主辦機關/聯絡人/電話:

台灣電力公司/陳德隆/(02)2366-7865

出國人員姓名/服務機關/單位/職稱/電話:

徐豪傑/台灣電力公司/電源開發處/主管成本/(02)2366-6870

出國類別:□1考察□2進修□3研究□4實習■5其他

出國期間:96年5月6日至96年5月17日

出國地區:德國、西班牙

報告日期:95年7月5日

分類號/目

關鍵詞:氣化技術(Gasification Technology)、煤炭氣化複循環發電技術

(IGCC)、二氧化碳捕捉與封存(CCS)、酸氣淨化系統(AGR)、

合成氣 (Syngas)

內容摘要:(二百至三百字)

德國能源製程及化學工程學院 IEC(Institute of Energy Process Engineering and Chemical Engineering)與西門子公司、RWE 電力公司、VATTENFALL 電力公司於德國 Freiberg 舉辦第二屆國際 IGCC 研討會(2nd International Freiberg Conference on IGCC & XtL Technologies),會議主題包括國際間 IGCC 計畫介紹、各種氣化技術發展、氣化爐運轉經驗、合成氣淨化以及 CO2 捕捉技術之探討等,會中安排至當地 SVZ 氣化廠進行實地參訪,會議後順道參訪西班牙 Elcogas IGCC 電廠。

目前運轉中之示範性燃煤 IGCC 電廠(Buggenum、Wabash、Polk 與 Elcogas) 其可 用率均未達 80%,就台電公司(Utility)立場而言,IGCC 發電技術尚未達商業化 運轉水準。依據國際間進行之大型商業化 IGCC 電廠興建計畫,商轉日期大多訂在 2010 年以後,因此本公司引進 IGCC 發電技術,應視國際間大型商業化 IGCC 電廠 運轉後情形,再進行可行性評估。

本文電子檔已傳至出國報告資訊網(http://report.gsn.gov.tw)

<u>目 次</u>

壹、	出國緣起	03
貳、	出國行程	05
參、	德國 IEC 第二屆國際 IGCC & XtL 技術研討會	
	一、 會議議程	06
	ニ、 會議內容摘要	10
肆、	參訪西班牙 Elcogas IGCC 發電廠	
	ー、 Elcogas IGCC 電廠簡介	36
	ニ、 運轉可用率分析	42
伍、	心得與建議	
	ー、 参加德國 IEC 第二屆國際 IGCC & XtL 技術研討會	46
	ニ、 参訪西班牙 Elcogas IGCC 發電廠	47

壹、出國緣起

IGCC 淨煤技術除兼具低燃料成本(煤炭)與高發電效率(複循環發電)之 優點外,由於 IGCC 在 GT 燃燒前設置淨化設備處理空氣污染物,使得除硫 與除塵等淨化過程變得更簡單容易,即使採用高硫份之劣質煤,其環保防 制成本仍較傳統慣常燃煤機組低廉且抑制效率更高。

近來天然氣市場價格大幅上漲,反觀燃煤價格今年以來已漸趨穩定,逐漸 拉大NGCC與IGCC之經濟性差異,使得IGCC發展更有利基,加速刺激IGCC 之技術開發縮短技術成熟時程。煤炭初估有200年以上之蘊藏量,相較於石 油與天然氣之蘊藏量,煤炭已被公認是未來能源使用的主流,IGCC發展前 景可期。

京都議定書已於 2005 年 2 月 16 日正式生效,未來溫室氣體 CO2 之排放勢 必成為關注之焦點,尤其 CO2 排放燃煤電廠為主要來源,如何抑制 CO2 排 放已是刻不容緩的議題。IGCC 可利用 Syngas 淨化過程前增設水解設備(CO Shift),以最低成本將 CO2 分離並產製氫氣,未來一旦實施碳稅或具體 CO2 減量規範,則 IGCC 之經濟性將更具優勢。

IGCC 將是未來淨煤發電之主流,為確實掌握全球 IGCC 發展脈動,並隨時 接收相關技術資訊,奉 總經理指示本公司應適時派員前往歐、美、日等國 之 IGCC 電廠,實地考察瞭解興建及運轉可能遭遇問題,並參加國際性 IGCC 研討會,除可獲取第一手資料外,並於會中提出本公司所關切相關技術問 題,促使 IGCC 未來發展趨勢符合本公司期望。

德國能源製程及化學工程學院 IEC(Institute of Energy Process Engineering and Chemical Engineering)與西門子公司、RWE 電力公司、VATTENFALL 電力公司於 96 年 5 月 8 日~96 年 5 月 12 日假德國 Freiberg 召開第二屆國際 IGCC 研討會(2nd International Freiberg Conference on IGCC & XtL Technologies),會議 主題包括國際間 IGCC 計畫介紹、技術發展、運轉經驗、氣化製程發展、合成氣淨化技術發展與 CO2 捕捉技術之進展,以及各種合成氣之技術介紹

等,會中並安排至當地 SVZ 氣化廠實地參觀,會議內容極具參考價值,本 公司爰派員出席與會。

會議結束後順道參訪西班牙 Elcogas IGCC 電廠,該廠係全球裝置容量 (335MW)最大之燃煤 IGCC 示範電廠,該電廠採用 Prenflo 氣化製程(已被 Shell 併購)、Oxygen-Blown、乾式進料、ASU 和 GT 整合度 100%,與目前 Shell 氣化製程幾乎相同,本次參訪擬瞭解其電廠運轉及可用率、可靠度等情況, 作為本公司引進 IGCC 之參考。

貳、出國行程

5月06日~5月07日

往程及轉機(台北→法蘭克福→德勒斯登)

5月08日~5月12日

德國 IEC 第二屆國際 IGCC & XtL 技術研討會(弗萊堡)

5月13日(星期日)

移動日(德勒斯登→法蘭克福→馬德里)

5月14日~5月15日

參訪西班牙 Elcogas IGCC 電廠(Puertollano)

5月16日~5月17日

返程(法蘭克福→台北)

參、德國 IEC 第二屆國際 IGCC & XtL 技術研討會

本研討會係由德國 IEC (Institute of Energy Process Engineering and Chemical Engineering)所舉辦, IEC 位於德國 Saxony 省 Freiberg, IEC 以發展氣化技術 著稱,世界首座壓力煤炭氣化廠即誕生於此,目前 IEC 致力於煤炭、廢棄 物以及生質能等氣化技術,並積極發展成為全球化石原料氣化及再生能源 之技術中心。

-、 會議議程:

本次研討會共安排 38 場次專題討論,內容大致可分為四部分,包括 IGCC 電廠技術、氣化製程研究、合成氣(Syngas)應用技術以及二氧化碳捕捉技 術等,詳細專題討論題目與主講人詳列如下:

IGCC 電廠技術研討部分:

- 1. Present German Energy Policy in the European and Global Context / Jürgen-Friedrich Hake; Forschungszentrum Jülich GmbH (Germany)
- Zero-CO2 IGCC Power Plant of RWE Power AG First Steps Toward Commercial Implementation / Johannes Ewers, Werner Renzenbrink, Karl-Josef Wolf; RWE Power AG (Germany)
- Gasification History and Activities within the Vattenfall Group / Thomas Porsche, Nicklas Simonsson, Hubertus Altmann, Dmitry Korobov; Vattenfall Europe Generation AG & Co. KG (Germany)
- Siemens IGCC and Gasification Technology Today's Solution and Developments / Manfred Schingnitz, Frank Hannemann, G. Zimmermann; Siemens Fuel Gasification Technologies GmbH (Germany)
- Modelling IGCC Plants Using the Simulation Tool Ebsilon Professional / Reiner Pawellek; STEAG KETEK IT GmbH (Germany)
- 6. Development of Evaluation Technology on Various Phenomenons in Coal

Gasifier / Saburo Hara; Central Research Institute of Electric Power Industry (CRIEPI) (Japan)

- 7. Gas Turbines for Syngas / Klaus Payrhuber; GE Energy Europe (Austria)
- Nuon Magnum Power IGCC Project for 1200 MW_e Net Power / Rik van der Ploeg1, Rien van Haperen2; 1Shell Global Solutions International BV, 2NUON (Netherlands)
- Advanced Modelling of IGCC-Power Plant Concepts Effects of ASU-Integration on Plant Performance and Gas Turbine Operation / Mathias Rieger, Robert Pardemann, Bernd Meyer; TU Bergakademie Freiberg
- The Future of Integral Processing of Fuels by Gasification at the Gasworks of Sokolvská Uhelná, Czech Republic / Petr Mika; Sokolvská Uhelná a.s. (Czech Republik)
- Puertollano IGCC Power Plant. Operational Experience and Current Developments / Francisco Garcia-Pena, Pedro Casero Cabezon; Elcogas SA (Spain)
- 12. Integrated ITM Oxygen-Gas Turbine System for IGCC / Dennis Horazak1, VanEric Stein2, Gerhard Zimmermann3, Mike Rost3; 1Siemens Power Generation Inc., 2Air Products and Chemicals, Inc., 3 Siemens AG Power Generation (USA/ Germany)

氣化製程研究部分:

- 1. Conceptual Study of Legnica Lignite Gasification / Marek Sciazko, Tomasz Chemielniak; Institute for Chemical Processing of Coal (Poland)
- Syncrude Oil and Upgraded Syncoal Production from Mild Temperature Pyrolysis of Subbituminous Coals / Dieter Neubauer, Ebbe R. Skov; ConvertCoal, Inc. (Germany/USA)
- Sasol-Lurgi Fixed Bed Gasification for Fuels and Chemicals / Osman Turna; Lurgi AG (Germany)
- 4. Operational Status of the BGL Gasification Technology on Low Rank Coal

and other Fuels / Matthew Seed; Advantica (UK)

- PWR Compact Gasifier Dry Feed System Development / Kenneth M.
 Sprouse, David R. Matthews; Pratt & Withney Rocketdyne Inc. (USA)
- Conceptual Analysis for a Grass Fired IGCC Plant / Johannes Judex; Paul Scherrer Institut (Switzerland)
- CFD-Modelling of Oil and Coal Gasification / Andreas Ortwein, Bernd Meyer; TU Bergakademie Freiberg (Germany)
- CEA Research Activities in the Field of Entrained Flux Reactors / Jean Marie Seiler, F. Defoort, S. Rougé, S. Ravel, P. Castelli, B. Drevet; CEA Grenoble (France)
- Investigation into the Root Cause of Fouling During Processing of Condensate from Fixed Bed Gasifier / Setobane Mangena, R.H. Matjie; Sasol Technology R&D (South Africa)
- Thermodynamic Modelling of the BGL-Gasification Process with Consideration of Alkali Metals / Stefan Guhl, Bernd Meyer; TU Bergakademie Freiberg (Germany)

合成氣(Syngas)應用技術部分:

- Large Scale Synthesis Gas Production for Gas to Liquids / Kim Aasberg-Petersen; Haldor Topsoe A/S (Denmark)
- GTL in the Tail-End Phase of Gas Fields Focus on Small Size Units / P. Bernoux, W. Kleinitz, C. Ryszfeld, E. Zindani; Gaz de France (France/ Germany)
- Refinery Integrated XtL: Challenges and Opportunities / Veronique Hervouet; Total (France)
- Hydrogen Production by MPG Gasification for Upgrading Canadian Oil Sands to Transportation Fuel / U. Wolf1, H. Schlichting1, S. Walter1, J. Quinn2; 1Lurgi AG, 2North West Upgrading Inc. (Germany/Canada)
- 5. Large-Scale Fischer-Tropsch Diesel Production / Ir. R. W. R. Zwart; Energy

Research Centre of the Netherlands (Netherlands)

- World Scale BTL Facilities Technology and Site Evaluation / Olaf Schulze, Matthias Rudloff, Kathrin Bienert; CHOREN Industries GmbH (Germany)
- Novel Technology Platform for Warm Syngas Clean-up: Progress from Field Testing with Coal Derived Syngas / Brian Turk, Jerry Schlather; RTI International Eastman Chemical Company (USA)
- Metal Sorbents for Mercury, Arsenic and Selenium Capture from Fuel Gas at Elevated Temperatures / Johnson Matthey Technology Centre, 2National Energy Technology Laboratory, 3Stationary Source Emissions Control (UK/USA)
- The Order of Selectivity in Fischer-Tropsch-Synthesis / Hans Schulz; Engler-Bunte-Institute, University of Karlsruhe (Germany)
- Options for Upgrading & Refining Fischer-Tropsch Liquids / John. J.
 Marano; Energy Systems Consultant to the U.S. DOE (USA)
- Diesel Selective Hydrocracking of Fischer-Tropsch Wax Experimental Investigations / Matthias Endisch, Thomas Kuchling, Thomas Dimmig; TU Bergakademie Freiberg (Germany)
- 二氧化碳捕捉技術部分:
- German Participation in European and International Activities Related to Clean Coal Technologies Including Carbon Capture and Storage / Hubert Höwener; Forschungszentrum Jülich GmbH (Germany)
- Linde Rectisol Process The most Economic and Experienced Wash Process for Removal of Sulphur Compounds and CO2 from Gasification Gases / A. Prelipceanu, H.-P. Kaballo, U. Kerestecioglu; Linde AG (Germany)
- CO2 Capture: The IGCC Retrofit Conundrum / Chistopher Higman; Syngas Consultants Ltd. (UK)

- IGCC Plant Designs for CO2 Capture 90% Capture, Partial Capture and Capture Ready / Neville Holt, Jeffrey Phillips, George Booras, Ronald Schoff; EPRI (USA)
- Study on CO2 Capture through Desulfurization in IGCC / Hong-Yue Wang, Hyung-Taek Kim; Division of Energy System, Ajou University (Korea)

二、 會議內容摘要

本研討會各專題內容豐富多元,茲簡述相關之技術摘要如下:

(一) IGCC 電廠技術研討

(1)德國能源政策以及淨煤發展現況(德國聯邦經濟科技部 BMWi):

德國目前能源使用配比為核能 27.7%、一般煤炭(煙煤、亞煙煤)24.5 %、褐煤 26.7%、天然氣 9.6%、油 0.9、再生能源 8%及其他 3.1%,詳 如圖 1。

圖1、德國能源使用配比

其中煤炭使用佔比已超過50%,在能源使用上佔有極重要之角色,由於 煤炭燃燒產生大量的二氧化碳,在兼顧能源使用與環境考量等前提下, 德國提出三項主要的能源使用原則,包括提高能源使用效率、開發再生 能源使用以及持續發展核能。

在因應京都議定書氣候保護政策方面,BMWi則提出1.減量目標(減少 排放21%)與污染物交易計畫,2.共同減量(Joint Implementation),3. 清潔發展機制(Clean Development Mechanisms)等三大方案。

德國 BMWi 自 2002 年開始籌畫 COORETEC 計畫(二氧化碳減量技術), 2004 年正式成立 COORETEC 計畫,其發電效率與 CO2 儲存技術之規劃 進程(Roadmap)如圖 2,其中純氧燃燒示範電廠擬由 2017 年提前至 2010 年,IGCC 示範電廠擬由 2019 年提前至 2015 年,零排放電廠運轉時程提 前至 2018 年。

圖 2、COORETEC 計畫規劃進程(Roadmap)

德國二氧化碳目前進行之具體行動方案:

a. RWE 電力公司「CO2 零排放 450MW IGCC 電廠計畫」並考慮 CO2 之儲存。

- b. Vattenfall 電力公司擬興建興建一座 CO2 零排放之純氧燃燒之示 範電廠。
- c. 複循環機組效率提升至 60%。
- d. 發展主蒸氣溫度 700℃之高效率燃煤超臨界汽力機組。

(2)德國 RWE 電力公司興建 CO2 零排放 IGCC 電廠計畫:

RWE 電力公司目前發電能源使用配比為一般煤炭 32%、褐煤 33%、核能 21%、天然氣 11%以及再生能源 3%如圖 3。

圖 3、RWE 電力能源配比圖

由於煤炭用量已達 65%,其中褐煤產量大熱値低,RWE 為充分利用國 產褐煤,並配合京都議定書溫室氣體減量政策,擬規劃設置一座燃用褐 煤之 450MW IGCC 電廠包含 CO2 捕捉傳輸與儲存技術,此外在 CO2 減 量技術上亦同步發展傳統燃煤電廠 CO2 捕捉技術,預期未來將推廣設置 於現有慣常燃煤機組。

450MW IGCC-CCS 計畫內容包括:燃料採萊茵河流域褐煤、裝置容量 450MW,淨發電出力 360MW,淨熱效率(目標值)40%(LHV),CO2 排放量 2.3 百萬噸/年,預計商轉年 2014 年。 RWE 之 450MW IGCC-CCS 計畫目前(2007 年 5 月)已完成初步概念規 劃,初步評估擬考慮選用之氣化製程技術為 HTW、SFG 或 SHELL 以及 CO2 捕捉方式,挑選合適之 CO2 儲存場址,並已開始進行相關法規申請 作業。本計畫預計 2007 年 8 月決定採用何種氣化製程以及設廠廠址,計 畫重要里程碑詳如圖 4。

圖 4、RWE 450MW IGCC-CCS 計畫里程碑

RWE 初步擬定建廠主要評估準則包括:

- a. 在氣化製程方面必須有參考廠可供評估、大型化(Scale-up)技術風險以及後續發展潛能。
- b. 燃用萊茵河褐煤必需穩定可靠,或可混燃其他燃料之潛力。
- c. 全廠各製程(氣化區、淨化區、空分廠及發電區)必須協調運 轉並發揮其效能。
- d. 低投資成本以及運轉維護費用。

依據上開評估準則分析後,RWE 以初步獲致兩點結論:1.氣化系統的大 小需先決定電廠容量。2.不同氣化製程各有其優缺點,必須通盤考量, 無法快速評估合適之氣化製程。 IGCC 加裝 CCS 勢必犧牲電廠效率,在不加裝 CCS 情況下 IGCC 之廠效 率約為 49%~54%(LHV Gross)、38%~45%(LHV Net), CO2 之排放 量介於 880~1060 克/度之間。若考慮加裝 CCS 則機組效率會降為 48% ~50%(LHV Gross)、36~38%(LHV Net), CO2 之排放量可大幅降為 90~290 克/度。而 RWE 之 IGCC-CCS 計畫目標效率訂為 40%(LHV Net) 詳如圖 5。

圖 5、IGCC W/O CCS 效率與 CO2 排放量比較

在 IGCC 建造成本方面,近年原物料價格大幅上漲,以 2007 年為例電廠 興建成本已較 2005 年高約 30-40%,尤其在 CCS 設備部分,實際採購裝 設成本,將可能遠高於研究階段估計之價格,因此在 IGCC 電廠經濟性 方面依目前各方評估數據,俟實際建廠時恐有低估之虞。

(3)德國 Vattenfall 電力事業集團煤炭氣化發電計畫:

Vattenfall 在燃煤發電的發展:

德國 Vattenfall 電力事業集團目前總裝置容量約 1,660 萬瓩,年營業額約 105 億歐元,公司員工約 2 萬餘人,擁有近 6,000 萬噸礦藏褐煤(lignite),

其褐煤礦藏分佈如圖 6 所示。

Vattenfall Europe				
<u>total</u>	58.0 million t			
- Jänschwalde	14.5 million t			
- Cottbus-Nord	5.1 million t			
- Welzow-Süd	19.4 million t			
- Nochten	19.0 million t			

圖 6 Vattenfall 在歐洲褐煤礦藏分佈

Vattenfall 主要燃煤電廠分為三大類包括褐煤電廠、煙煤電廠以及小型混 燒電廠等,其中褐煤電廠目前總裝置容量為7,420MW 加計興建中 Boxberg 電廠增建 675MW 機組後之總裝置容量為 8,095MW;煙煤電廠目 前運轉中僅 Rostock 電廠 553MW,興建中之電廠有 Moorburg(漢堡)與 Klingenberg(柏林),其裝置容量分別為1,640MW 與 800MW。詳細各電 廠裝置容量與新增容量詳圖 7。

Vattenfall Europe			
(gross capacity)			
lignite power plants	<u>7.420 [MW]</u> <u>8.095 [MW]</u>		
- Jänschwalde	3.000 [MW]		
- Boxberg	1.900 [MW] + 675 <i>[MW]</i>		
- Schwarze Pumpe	1.600 [MW]		
- Lippendorf (50% property)	920 [MW]		
<u>bituminous power plants</u>	<u>553 [MW]</u> <u>2.993 [MW]</u>		
- Rostock	553 [MW]		
- Moorburg (Hamburg)	1.640 [MW]		
- Klingenberg (Berlin)	800 [MW]		
smaller units	<u>3.183 [MW]</u>		
- Berlin (partly gas / oil)	2.708 [MW]		
- Hamburg (partly gas / oil)	475 [MW]		

圖 7 Vattenfall 燃煤電廠一覽表

目前於 Boxberg 興建之 unit R 褐煤超臨界機組裝置容量 675MW,機組效率 43.7% (LHV Net)主蒸汽溫度/再熱溫度/壓力為 600°C / 610°C / 28.6Mpa, CO2 排放量約為 900 公克/度,較 Boxberg 電廠現有機組 unit N 之 CO2 排放量 1200 公克/度,大幅降低 25%。Boxberg unit R 鳥瞰圖詳如圖 8。

圖 8、Boxberg unit R 鳥瞰示意圖

另以煙煤為燃料興建中電廠為 Moorburg,規劃設置 2 部單機容量 820MW 超臨界壓力機組,機組效率 46.5% (LHV Net)主蒸汽溫度/再熱溫度/壓 力為 600℃ / 610℃ / 27.6Mpa, CO2 排放量約為 700 公克/度,較現有煙 煤超臨界 Rostock 電廠之 CO2 排放量 800 公克/度,降低約 12.5%。

Vattenfall 近年在燃煤發電研發與投資有幾項結論:

1. 未來數年間用電成長仍逐年提高。

2. 燃煤發電在電力市場將扮演重要的角色。

3. 燃煤發電捕捉 CO2 與儲存將是下一個重要技術挑戰。

4. IGCC 將會是燃煤發電未來的重要關鍵技術。

Vattenfall 在生質氣化技術(Biofuel Gasification)的發展:

Vattenfall 投入生質氣化技術已有數年的歷史,生質氣化是利用原料包括 木材、樹皮及稻草等,經氣化製程產出電力以及應用於熱電共生

(Combine Heat and Power)領域,目前已於芬蘭 Tampere 設置一座示範型 IGCC 生質氣化發電廠與熱電共生利用。本計畫之 IGCC 以生質原料為主,產生合成氣送至 GT 發電並利用 GT 廢熱加熱蒸汽分別送至 ST 以及地區性需要使用蒸汽之場所(IGCC 生質氣化系統流程圖如圖 9)。

圖 9、Biofuel IGCC and CHP 系統流程圖

淨煤技術與 CCS 電廠的發展:

目前大型燃煤電廠 CO2 捕捉技術大致可分為煤炭燃燒後捕捉製程 (Post-combustion)、純氧燃燒後捕捉製程(Oxy-fuel process)以及煤炭燃 燒前捕捉製程(IGCC 製程 Pre-combustion)等三類。Post-combustion 捕捉為 目前傳統燃煤電廠所採用之技術,大多於煙氣除硫系統後加設 CO2 Scrubber 分離 CO2。Oxy-fuel process 係以純氧取代一般空氣送入鍋爐燃 燒,燃燒後煙氣主要成分為 CO2 與 H2O,再利用 Condensation 技術將 CO2 分離。而 Pre-combustion 則是先將煤炭氣化為 CO,利用 CO Shift (CO 水 解反應)將 CO2 分離。各 CCS 製程示意圖詳圖 10。

圖 10、燃煤電廠不同 CO2 捕捉製程示意圖

經分析採用煙煤、褐煤與天然氣等不同燃料分別在無 CO2 捕捉、 Post-combustion 捕捉製程、Oxy-fuel process 捕捉製程以及 Pre-combustion IGCC 捕捉製程之發電成本,由於褐煤燃料成本低廉,所以無論採用何 種 CO2 捕捉製程,褐煤之發電成本均為最低,反觀天然氣成本高因此在 各項 CO2 捕捉製程之發電成本均為最高。

至於煙煤(Hard Coal)在不考慮 CO2 運輸與儲存成本情況下,無 CO2 捕捉發電成本約 39€/千度,若考慮 CO2 捕捉 Post-combustion 與 Pre-combustion 製程發電成本大致相當約 55€/千度,而 Oxy-fuel process 發電成本較低約 52€/千度。

圖 11、各燃料在不同 CO2 捕捉技術下發電成本比較

Vattenfall 公司認為大型 IGCC 電廠商業化需具備下列之條件:

- 1. 可用率 (Availability) 達 90%以上。
- 2. 可接受系統彈性調度。
- 3. 具高發電效率潛能。
- 4. 高 CO2 捕捉率。
- 5. 低投資費用與運維成本。
- 6. 需與商業化電廠相同之保固條件。

綜觀上述條件,IGCC 在未來發展 CO2 零排放電廠趨勢下,仍是一項很好的選擇。

(4) Siemens 公司 IGCC、氣化技術近期發展簡介:

Siemens 公司已意識到天然氣價格大幅提昇,溫室氣體 CO2 排放也成為 全球關注焦點,未來使用低成本燃料(煤炭)、低污染排放與高效率 CO2 捕捉技術之共識已然形成,近年來已開始致力於研發淨煤發電技術。 Siemens 公司目前發展之氣化製程為 Siemens Fuel Gasification (SFG)屬於 Oxygen-blown、乾式進料、淬冷式 (Quench),氣化爐反應溫度介於 1300 ℃~1800℃之間,氣化系統流程圖詳圖 12。

圖 12、SFG 流程示意圖

SFG 主要特色為氣化後之粗合成氣(raw gas)利用水淬冷至 200℃,再 送至下游合成氣淨化系統,且 SFG 適合各種燃料(煤炭、石油焦、生質 與廢棄物等),由於採用乾式進料因此效率較高,採用淬冷技術可增加 系統可靠度,未來非常容易結合 CO2 捕捉技術,加設 CCS 潛力極大。

Siemens 公司同時也開發 IGCC 電廠規劃,其 IGCC 系統名為 Siemens Gasification Combined Cycle (SGCC),未提升系統效率,SGCC 目前致力於 ASU 與 GT 整合技術,由於 Siemens 公司同時生產 GT,在與 ASU 整合 技術上阻力較低,對 GT 空壓機性能可充分瞭解與利用,SGCC 系統流 程圖詳圖 13。

圖 13、SGCC 系統流程圖

Siemens 公司近期即將推出 SGCC 示範性 IGCC 電廠,並以加裝 CCS 設備 之零排放為目標,提供 ASU、GT 高整合度技術,改善現有 IGCC 電廠已 產生之困難問題,提升可用率與可靠度,降低投資成本。

(5) 荷蘭 NUON 電力公司 Magnum IGCC 發電計畫:

荷蘭 Nuon 電力公司,目前擁有一座 Shell 製程之 IGCC 示範電廠 (Buggenum), Shell 氣化製程 Shell Coal Gasification Process (SCGP)採用 Oxygen-blown、乾式進料、水牆管冷卻,規劃中之 Magnum IGCC 發電計 畫,分兩階段進行,第一階段之 IGCC 係複製 Buggenum 電廠機組,不設 置 CCS 設備,但預留 CCS 之設置空間與設計,初步規設 3 組 IGCC 機組, 總裝置容量為 1200MW,燃料採煤炭、石油焦與生質原料為主,為提升 電廠可靠度 GT 採合成氣與天然氣雙燒設計,設計效率目標値為 46% (LHV)。第二階段將所有機組增設 CCS 設備捕捉 CO2,為維持全廠出 力並提升可用率,將增設一座氣化爐,GT 改為純燒合成氣,預期廠效 率降為 42% (LHV)。

SCGP在CCS設置上有兩種方式,第一種是增設法,可就原本無CCS之系統預留空間,於適當時機於COS系統後設置SweetWGS分離並移除CO2;第二種是SourWGS直接與除硫淨化系統結合,一併移除硫份與CO2,此種方式必須一次完成無法已預留方式分階段完成。有關加設CCS流程方式示意圖如圖14。

圖 14、SCGP 在 CCS 流程差異比較圖

Shell 表示 SCGP 對於既有以及未來新設 IGCC 電廠設置 CO2 捕捉設備具 有極大之彈性,也有經濟上的優勢潛力,初步評估 IGCC 之 CO2 捕捉成 本大約介於 20~25€/噸,而傳統汽力機組於燃燒後捕捉 CO2 之成本大 約介於 30~50€/噸。

(二)氣化製程研究部分

在目前業界採用之氣化製程大致可分為固定床(Fixed Bed)、流體化床 (Fluidized Bed)、及噴流床(Entrained Bed)三種,茲將分別介紹這三種 氣化爐操作原理及運轉現況。

固定床式氣化爐(Fixed Bed)

在固定床內大粒徑之煤(5.08-0.635cm)從氣化爐之上端輸入,而水蒸氣 及氧氣由下端輸入,煤粒在下落之同時和水蒸氣及氧作用生成合成氣從 上方排出。固定床之缺點在固氣混合不均勻及溫度分佈不均,往往須要 很高之氣化爐才能使煤粒氣化反應達到平衡,且在較低溫下之煤,熱分 解產生焦油(tar)極難清除。氣化爐內溫度變化極大,且煤粒和氣體有 很顯著之溫差,氣化爐內煤粒和氣體混合不夠充分,這會降低煤炭氣化 反應效率。固定床式氣化爐可爲乾灰式(dry ash)或熔渣式(slagging),熔渣 式操作溫度範圍約430~1540℃(800~28000F),產生如焦油及液態去揮發 物等副產物,則藉由循環至結渣區而被分解。對於細粉煤炭亦可用於結 渣式氣化爐,然而乾灰式則需使用粗碎煤炭,而其設計操作溫度範圍較 低約在430~1095℃(800~20000F)。

固定床式氣化爐是發展歷史最悠久,及商業化應用最多的技術,包括壓 力式如 Lurgi(乾灰式)、British Gas Lurgi(簡稱 BGL 氣化爐)(熔渣式)與 氣壓式 Wellman Balusha 等。雖然 Lurgi 乾灰式氣化爐,已廣泛應用於世 界,但其相對較低的容量及不能處理細粉煤,使其應用受到了限制。而 British Gas 和 Lurgi 公司共同開發出之 BGL 熔渣式氣化爐。

流體化床式氣化爐(Fluidized Bed)

流體化床式氣化爐煤粒(粒徑<0.5cm)水蒸氣及氣化爐內均勻混合,產 生之合成氣由氣化爐上方逸出。和固定床比較,流體化床使固體和氣體 能較均勻之混合,因此氣體和煤粒的溫度差較小,氣化反應在近於恆溫 下產生效率較好。流體化床設計是屬中容量系統,其操作溫度範圍約 870~1038℃(1600~19000F);流體化床最大的缺點在於運轉溫度範圍小, 通常需低於煤之灰份融點並高到避免焦油產生之間。目前流體化床氣化 爐包括三種壓力式設計 Kellogg KRW、HT Winkler、U gas 和一氣壓式設 計 Winkler 等。

HT Winkler 已在德國 Berrenrath 建立每天可處理 708 噸褐煤的示範廠,操 作壓力為 10 個大氣壓力,氣化爐性能可達 96%的碳轉換率,每噸的褐煤 必須消耗 0.6 噸的氧氣和 0.3 噸的蒸氣。其它仍在發展階段的有 Kellogg Rust Westinghouse(簡稱 KRW Process)及 U-Gas Process,這兩種氣化製 程都是針對傳統的流體化床氣化爐加以改良而成,主要是再增加第二煤 炭氣化區以回收殘留在煤灰中的碳,以增加氣化爐的效率。

噴流床氣化爐(Entrained Bed)

噴流床氣化爐細小研磨過之煤粉(粒徑<0.013cm)與水蒸氣及氧混合送 入氣化爐,在爐中氣體和煤充分均勻混合產生合成氣由上方排出,氣化 爐操作溫度範圍約930~1650℃(1700~30000F),由於高溫運轉,因此有高 的碳轉化率,且溫度皆高於煤灰之融點,使大部份煤灰皆形成融渣而由 爐底排出。在此氣化爐內溫度十分均勻,氣體和合成氣之間幾乎沒有溫 度差異,且固氣混合情況優於固定床及流體化床,爲目前IGCC發電機 組主要採用之氣化爐型式。目前噴流床氣化系統主要發展的有 GE(Texaco)、E-Gas、Shell、MHI以及 Siemens。

產業界氣化的應用仍以化工製程為最大宗,而其中固定床設置成本最低,雖然氣化效率較差,但其發展歷史最久最為成熟,仍為化工產業及 汽電共生之首選。本次會議有關氣化製程發表之論文亦多屬固定床型 式,其中包括 Sasol-Lurgi 固定床針對不同燃料以及化學產製品之定量分 析,BGL 氣化爐使用低熱値煤炭(Low Rank Coal)之運轉經驗並發表相 關研究數據。 (三)合成氣 (Syngas) 應用技術部分

氣化後之合成氣(Syngas)除可作為燃料直接燃燒發電之外,合成氣也 可經由後續化工製程轉換為需要之化學原料如 Ammonia 或經濟性更高 之燃料如氫、甲醇(Methanol)、合成柴油(Diesel)以及合成石蠟(Wax) 等。合成氣之用途如圖 15。

圖 15、合成氣用途示意圖

合成氣之後製以 Fischer-Tropsch (FT) 製程是最具代表性,在化工界應用也最為廣泛,其化學反應式為:

 $(2n+1)H2 + nCO \rightarrow CnH(2n+2) + nH2O$

Fischer-Tropsch 製程利用合成氣主要化學成分 CO 與 H2,產製合成石蠟 與合成柴油等產品,在本次會議中荷蘭能源研究中心發表「大規模

(Large-Scale)Fischer-Tropsch 合成柴油生產技術」,由於荷蘭在生質能 產業極受重視,政府多以利用生質能為目標,該荷蘭能源研究中心認為 大規模生產合成氣必須仰賴噴流床與流體化床之氣化技術,在噴流床部 分較適合燃用煤炭,若採生質能為原料必須先預處理,而流體化床可百 分之百採用生質原料,但觸媒必須先進行改良。 美國 DOE Dr. John J. Marano 認為主要影響 XtL 之主要因素大致分為製程 上游,化工廠本身以及下游等。上游要考慮的因素有採用的燃料為何(煤 炭、石油焦、天然氣、生質原料),以及化學成分的組合。化工製程本 身影響的則有氣化製程、溫度、目標產製品以及 Fischer-Tropsch 轉換選 擇(溫度、觸媒及反應型式),在下游部分必須瞭解工廠與使用地距離, 產品運送方式,產品使用目的等。天然原油與 FT 合成柴油成分比例如 圖 16。

圖 16、天然原油與 FT 合成柴油成分比例

(四) 二氧化碳捕捉技術部分

CO2 減量議題已成為全球矚目之焦點,各國政府也致力於設定減量目標,除京都議定書締約國簽署減量協定外,美國各州政府也紛紛制訂減量計畫,以加州州政府為例,預定 2010 年減量至 2000 年排放量標準(減量 11%),2020 年減量至 1990 年排放量標準(減量 30%),2050 年必須減量至低於 1990 年排放量(減量 80%)。在電廠排放管制方面,所有新設基載電廠或更新電廠,其 CO2 排放均不得大於天然氣複循環排放量(433 公克/度)。

雖然目前 CO2 之封存仍有許多問題需克服,無法找出有效可行之商業化 儲存方式,但在燃煤電廠 CO2 捕捉部分,已有多項技術發展,包括傳統 粉煤鍋爐之燃燒後捕捉、採 IGCC 之燃燒前捕捉以及純氧燃燒後捕捉等 三項技術,流程示意圖如圖 17。

圖 17、CO2 捕捉技術示意圖

至於究竟採何種 CCS 技術為最佳,仍須視地區特性、燃煤種類及技術成 熟度等因素,目前尙通用之無解決方案。美國 EPRI 研究顯示,<u>以煙煤</u> <u>為燃料,選擇 IGCC+CCS 其成本最低;若採亞煙煤為燃料,則 IGCC+CCS</u> 與傳統粉煤汽力機組+CCS 之發電成本大致相同;以褐煤為燃料,則以 傳統粉煤汽力機組+CCS 之成本最低;至於純氧燃燒+CCS 技術與化學循 環捕捉 CO2 方式目前正在積極發展階段,後勢潛力亦不容小覷。

國際間燃煤發電與 CCS 技術之發展現況,其中燃煤超臨界技術蒸汽溫度 在 593℃(1100°F)以下已屬成熟階段,蒸汽溫度介於 610℃~593℃(1150 °F~1100°F)之間屬經過驗證仍在發展階段,蒸汽溫度在 760℃~610℃ 間屬研發階段;燃煤 IGCC 目前則仍屬示範階段,純氧燃燒鍋爐技術已 完成研發進入發展階段。至於 CCS 部分, CO2 捕捉技術已完成驗證,而

CO2 儲存則尙在研發階段。各技術發展近程詳圖 18。

圖 18、燃煤發電技術與 CCS 發展進程

目前已成熟也廣泛應用之傳統燃煤機組之 CO2 捕捉技術為 MEA (mono-ethanolamine)法,其主要捕捉原理說明如下:

CO2 捕捉設備一般置於粉煤鍋爐 FGD (排煙脫硫設備)之後煙囪之前, 此項技術有兩座反應槽,第一座是吸收塔,脫硫後之煙氣進入吸收塔, 煙氣中之 CO2 會被 MEA 所吸附,乾淨之煙氣再排放於大氣,含 CO2 之 MEA 經蒸發器將 CO2 分離後進入另一座 CO2 Stripper 使 CO2 純化,再 送往淨化與壓縮區, CO2 捕捉與流程詳圖 19。

圖 19、傳統鍋爐 MEA 捕捉原理設備流程圖

美國已有燃煤電廠使用 MEA 捕捉 CO2,堪稱商業化成熟技術,惟捕捉 成本仍高,依據目前運轉經驗得知,大約需耗用 15MW 廠用電,CO2 捕 捉率可達 90%。在設備方面,需另設置 Rebolier,在佔地需求部分,以 一座 600MW 電廠爲例大約需 5~6 英畝(約 2.5 公頃)之空間。MEA 製 程除可捕捉 CO2 外,另有附加效益可進一步降低 Sox 與 NOx 之排放, 號稱幾乎可達零排放。

目前 GE(Texco)運轉中(Tempa)與規劃興建之 IGCC 電廠(AEP、Duke) 並無設置 CCS 設備,評估未來電廠增設 CCS 時(retrofit),必須變更 IGCC 流程設計,並對原系統產生下列改變:

- 以規劃中 AEP 電廠設計為例,一座氣化爐,兩部 GE7FB 氣渦輪機, 原設計可容許自 GT 抽氣約 30~40%供應空分廠(ASU)使用,俾節 省 ASU 廠用電,提升廠效率。但是若增設 CCS 設備後,由於 GE 設 計 GT 燃燒氫氣時需要更多的壓縮空氣,因此 GT 並無餘力供應 ASU 所需之壓縮空氣,勢必耗損電廠效率。
- 由於原規劃氣化爐能力與 GT 容量係相互搭配,增設 CCS 設備後, 必須消耗更多的化學能量,因此變更設計後,GT 出力將無法滿載出力。
- 3. 原 IGCC 電廠 retrofit 增設 CCS 設備,必須將原除硫系統(AGR)中 COS/HCN hydrolysis 反應設備,置換為 sour shift reaction,並將 CO2 分離成為製程副產品,另外必須抽取 HRSG IP 中壓段蒸氣作為 COshift 水解反應之蒸氣來源,最後將 CO2 淨化並增壓至 138Barg。
- 原 GE 設計之 Radiant Quench IGCC without capture 使用 MDEA 技術來 分離硫,未來設增 CCS 設備後, MDEA 將以新設 2 座 Selexol 吸收槽 來取代,作為分離 CO2、H2 以及 S 之功能。
- 5. 初步分析主要氣化製程增設 CCS 後淨出力減少幅度依序為 Shell(約

120MW)、E-GAS(約 97MW) 最少為 GE(約 78MW),主要係 GE 氣化 爐有 Quench (Q) 與 Radiant Quench(RQ)兩種設計,能提供 CO2 水解 時所需之蒸氣。

兹分別比較超臨界燃煤機組與 IGCC(GE、Shell、E-GAS)在無捕捉 CO2、 Retrofit 為 CO2 捕捉電廠與新設有捕捉 CO2 電廠之電廠出力比較(詳圖 20),獲致以下結論:

- 1. 無論何種型式發電設備,增設 CO2 捕捉設備後,出力一定會降低。
- 若考慮以 Retrofit 增設 CO2 捕捉設備時,燃煤超臨界機組減少出力最 多幾乎達 30%,而 IGCC 製程出力減少約在 16%~25%之間,其中以 GE 全淬冷方式最低。
- 新設電廠含 CO2 捕捉(new Capture)時,反而超臨界電廠出力減少 最低約 8.3%,而以 Shell 製程減少最多達 20%。

圖 20、各燃煤發電採用 CO2 捕捉設備後淨出力比較圖

發電成本分析

全球原物料與營造成本近年來大幅上揚,以美國爲例自 2003 年起迄今化 工廠建廠成本上漲約 27.5%,而營建指數也上漲達 20%(詳如圖 21),因 此 2006 年美國宣稱許多電力建設計畫之投資金額也都超過原預算數,甚 或更新預期電廠建廠成本,在燃煤超臨界建廠成本部份,最新公佈之新 設電廠單位造價已高達 2,400 美元/KW 左右,其中 AEP 之 Hempstead 電 廠更高達 2,800 美元/KW。在 IGCC 建廠成本部份,單位造價高達 3,000 美元/KW 以上(詳如圖 22),這些最新公佈經濟數據,明顯與過去認知 有相當大的落差,當然也影響後續電廠投資的意願與技術發展的動力。

Owner	Plant Name/ Location	Net MW	Technology/ Coal	Reported Capital \$ Million	Reported Capital \$/kW
AEP SWEPCO	Hempstead, AR	600	USC PC/PRB	1680	2800
AEP PSO/OGE	Sooner, OK	950	USC PC/PRB	1800	1895
AEP	Meigs County, OH	630	GE RQ IGCC/ Bituminous	1300 early 2006 now ?	?
Duke Energy	Edwardsport, IN	630	GE RQ IGCC/ Bituminous	1985	3150
Duke Energy	Cliffside, NC	800	USC PC/Bit	1930	2413
NRG	Huntley, NY	620	IGCC/Bit, Pet Coke, PRB	1466	2365
Otter Tail/GRE	Big Stone, SD	620	USC PC/PRB	1500	2414
Southern Co	Kemper County, MS	600	KBR IGCC Lignite	1800	3000

圖 22、2006 年美國最新公佈新設燃煤電廠造價成本一覽表

進一步分析超臨界燃煤電廠與 IGCC 電廠在有無 CO2 捕捉設備時之建廠 成本比較,No Capture 方面仍以超臨界電廠最低約介於 1,900~2,200 美元 /KW(2006 年價位),IGCC 電廠則以 GE Total Quench 最低,採 Retrofit Capture 燃煤超臨界與 IGCC 則不分軒輊大約為 3,700 美元/KW(2006 年 價位),採 New Capture 則約低於 Retrofit Capture 約 3,500 美元/KW(2006 年價位),但無論超臨界或 IGCC 是否採用 CO2 捕捉其單位投資成本均 為 No Capture 最低、New Capture 次之而 Retrofit Capture 最高(詳圖 23)。

圖 23、燃煤發電技術在考慮 CO2 捕捉情形下之投資成本比較

EPRI 也針對超臨界與 IGCC 考慮增設 CCS 與否,進行均化發電成本分 析,其評估基準為 2006 年價位,30 年均化發電成本,在 No Capture 方 面超臨界電廠約為 5 美分/度,而 IGCC 電廠約為 6.5~7 美分/度;若考慮 CO2 捕捉以及運送儲存,採 Retrofit Capture 時超臨界電廠約為 10 美分/ 度,而 IGCC 電廠以 GE Total Quench 最低約為 9 美分/度,Shell 最高約 11 美分;採 New Capture 時各發電技術約略低於 Retrofit Capture0.5 美分/ 度。(詳圖 24)

圖 24、燃煤發電技術在考慮 CO2 捕捉情形下之均化發電成本比較

最後 EPRI 研究指出,IGCC 倘若無法有效擴大(Scale-up)氣化爐容量、 提升氣化壓力、降低具有 CO2 捕捉功能設備之建造成本,以目前超臨界 發展中 CO2 捕捉技術之成熟度與成本,未來 IGCC 之優勢恐仍不敵超臨 界技術,但目前 CCS 最大的瓶頸仍在於 CO2 儲存方式,除 EOR 已商業 使用外,其他 CO2 儲存技術仍有一段長路要走。

(五)德國 SVZ 氣電共生 IGCC 電廠技術參訪

會議中並安排前往德國東部 SVZ 氣電共生 IGCC 電廠 Sustec Schwarze Pumpe 進行技術參訪, Sustec Schwarze Pumpe 氣化廠於 1964 年完成首座 固定床氣化爐,初期係以褐煤爲燃料,氣化作為 town gas 之用,並陸續 於 1969 年完成 24 座氣化爐,成為全球最大 town gas 氣化廠,供應東德 85% town gas 需求量。1990 年東西德統一後 town gas 已經漸漸為天然氣 取代,1992 年本廠轉型為以廢棄物為燃料之氣化廠,1995 年完成大型化 氣化製程、甲醇製造廠以及汽電共生發電廠等,2005 年本廠由瑞士 Sustec 集團取得經營權。

Sustec Schwarze Pumpe 電廠是德國最大廢棄物處理化工廠,其主要處理 之廢棄物分爲固體與液體兩類,固體廢棄物大多爲廢棄塑膠、資源回收 物等每日約處理 40 萬噸,在液體廢棄物部分則爲煉油殘渣、塔底油與 廢棄溶劑等每日約處理 5 萬噸,經過氣化製程後之產製品[分別爲合成氣 (synthesis gas)、甲醇(methanol)、石膏(gypsum)、電力與蒸氣等, 其所採用之氣化製程共有三種包括一座 Siemens 製程(噴流床)、BGL 製 程與 FDV 製程(原 Lurgi)之固定床,電廠流程示意圖詳圖 25。

圖 25、Sustec Schwarze Pumpe 電廠流程示意圖

由於時間因素本次僅安排參訪兩座氣化爐(BGL與Siemens 製程)茲分別說明如后:

BGL (British Gas - Lurgi Gasification) 氣化製程

BGL 屬固定床氣化流程,氣化爐內徑約3.6M,雙層水冷,噴射式進料, 氣化原料爲固體廢棄物,液態溶渣(Slag)出口採水冷冷卻。BGL 氣化 爐進料速率爲35 噸/小時,合成氣產量約35,000 Nm³/hr,氣化爐內反應 溫度爲1,600℃,氣化壓力爲25 bar,合成氣產出溫度500-700℃,淨化 後合成氣溫度小於200℃,純氧供應量爲6,000 Nm³/hr,蒸汽產出量6-9 噸 /hr,液態溶渣排出速率約7.5 t/hr。BGL 氣化爐示意圖詳圖26。

圖 26、BGL 氣化爐示意圖

Siemens 氣化製程

Siemens 屬噴流床氣化流程,氣化爐內徑約2.4M,爐牆採水冷式,氣化 爐有三種爐嘴,分別使用塔底油(濕式進料Slurry)、天然氣與重油等三 種進料,其中天然氣進料速率約200~600 Nm³/hr,重油進料速率約2~4 噸/hr,塔底油/泥漿進料速率約3~9 噸/hr,液態溶渣(Slag)出口採水 冷冷卻。Siemens 氣化爐合成氣產量約50,000 Nm³/hr,合成氣熱値約 12,000~15,000 kJ/Nm³,氣化爐內反應溫度為1,800°C,氣化壓力為25 bar, 純氧供應量為5,000 Nm³/hr,蒸汽產出量4 噸/hr,液態溶渣排出速率小 於2 噸/hr。發電廠部分氣渦輪機裝置容量為45MW,汽輪發電機裝置容 量為30MW。Siemens 氣化爐示意圖詳圖27。

圖 27、Siemens 氣化爐示意圖

Sustec Schwarze Pumpe 氣化廠可稱得上是傳統化工廠,以產製化工製品 為主,汽電共生發電為輔,由於氣化製程原料為廢棄物,因此對氣化效 率業者並不在意,全廠氣化製程部分可用率與可靠度均已達商業化運轉 95%以上。

肆、 參訪西班牙 Elcogas IGCC 發電廠

德國 IEC 第二屆國際 IGCC & XtL 技術研討會議結束後,順道參訪位於 西班牙中部 Puertollano 地區的 Elcogas 電力公司 IGCC 電廠(見圖 28), 實地瞭解其 IGCC 發電計畫的執行情形。

圖 28、西班牙 Elcogas IGCC 發電廠鳥瞰圖

一、Elcogas IGCC 電廠簡介

1992年4月西班牙、法國及葡萄牙等歐洲國家的六家能源事業公司決定 共同投資在西班牙中部的 Puertollano 地區執行一項屬於歐洲的煤碳氣化 複循環發電實証計畫-Elcogas Project 實際驗證此一淨煤發電技術的可 行性。為使整個實証計畫得以順利施行,並在西班牙的馬德里市成立 Elcogas 公司專責推動該項計畫。隨後義大利的 ENEL 公司,英國的 National Power 公司,西班牙的 Babcock & Wilcox Espanola 公司以及德國 的 Siemens 和 Krupp-Koppers 公司亦相繼加入,圖 29 所示即為 Elcogas 計 畫成員及持有股份。該項計畫並獲歐聯(European Union) THERMIE Program 的贊助。1992年7月整個建廠計畫在西班牙的 Puerfollano 廠址 正式展開。採用 Krupp-Koppers 的 Prenflo 氣化爐(目前已由 Shell 購倂) 以及 Siemens 的 V94.3 複循環機組,總發電容量 355MWe ISO(氣渦輪機 190MW,汽輪機 145MW)。

圖 29、Elcogas 計畫公司組成及持有股份

圖 30 所示是 Elcogas 公司煤炭氣化複循環發電廠的系統流程。該廠採用 100%氧氣整合,空分廠所需空氣完全從氣渦輪機壓縮機的出口抽取。空 分廠設備由法國 Air Liquide 提供,採用低溫冷凍的方法分離空氣來製送 氧氣和氦氣,產生 85%純度的氧氣用於氣化,99.9%純度的氦氣用於燃料 輸送,較低純度的氦氣用來稀釋合成氣,以減少 NOx 的生成。Elcogas IGCC 電廠採用 50%當地高灰份煤及 50%石油焦(pet coke)為主要燃料。煤粒經 加熱乾燥後送入磨煤機磨成煤粉後以空分廠分離出來之氦氣輸入 Prenflo 氣化爐。氣化爐外部為鋼製高壓殼體,內部採用水冷壁結構。外徑 5.6m, 連同第一級合成氣冷卻器總高 52m。生成的合成氣由爐膛上部排出,部 分經淨化的低溫合成氣引到爐膛出口處,將高溫合成氣急冷到約 900 ℃,以防止合成氣中的熔融渣粘在合成氣冷卻器的管壁上。合成氣由中 心管道引出,送往對流式合成氣冷卻器,繼續冷卻到約 240℃。在水冷 壁和合成氣冷卻器中產生 12.6MPa 和 3.7MPa 的飽和蒸汽,再經廢熟鍋爐 加熱後送往汽輪機發電。液態渣沿水冷壁向下流動,進入氣化爐底部水室 淬冷並形成顆粒狀渣,再由排渣斗(Lock Hopper)排出。合成氣之淨化分為 除塵及酸氣淨化二部份,合成氣進入陶瓷條過濾器以濾除飛灰及焦炭, 並再循環回氣化爐再燃以回收未燃碳。離開陶瓷條過濾器之合成氣接著 進入文氏除塵塔(Venturi scrubber)去除鹵化物。酸氣淨化系統則包含 COS 觸媒水解器,及以 MDEA 爲吸收劑之酸氣淨化設備。硫回收系統則採用 Claus 製程回收元素硫。

圖 30、Elcogas 電廠系統流程圖

Elcogas IGCC 電廠主要設計參數分述如下:

煤質與石油焦(Pet Coke)主要成分與混合後組成比例:

	COAL	PET COKE	FUEL MIX (50:50)
Moisture (%w)	11.8	7.00	9.40
Ash (%w)	41.10	0.26	20.68
C (%w)	36.27	82.21	59.21
H (%w)	2.48	3.11	2.80
N (%w)	0.81	1.90	1.36
O (%w)	6.62	0.02	3.32
S (%w)	0.93	5.50	3.21
LHV (MJ/kg)	13.10	31.99	22.55

使用之煤炭為 Puertollano 當地生產之低硫(0.93%)、高灰份(41.1%) 煤,與而時石油焦具有低灰份(0.26%)、高硫份(5.5%)之特性,二者 互補混合後平均灰份約為 20.68%, 硫份為 3.24%。燃料平均熱値約 22.55MJ/Kg(5,386 Kcal/Kg)。

POWER OUTPUT	GAS TURBINE (MW)	STEAM TURBINE (MW)	GROSS TOTAL (MW)	NET TOTAL (MW)
	182.3	135.4	317.7	282.7
EFFICIENCY	GROSS		NET	
(LHV)	47.12%		42.2%	
EMISSIONS	g/kWh		mg/Nm ³ (6% Oxygen)	
SO ₂	0.07		25	
NO _x	0.40		150	
Particulate	0.02		7.5	

發電設備出力、效率與污染物排放:

本計畫採用 Siemens 94.3 氣渦輪機單機出力 182.3MW,為提升電廠可用 率擁有合成氣與天然氣雙燒功能,汽輪機出力 135.4MW,合計全廠毛出 力 317.7MW,淨出力 282.7MW。機組毛效率 47.12%(LHV),淨效率 42.2 %(LHV),圖 31 顯示天然氣發電比例已逐年降低。

在污染物排放部分,Sox 為 25ppm (0.07 克/度)、NOx 為 150ppm (0.4 克/度)、Tsp 為 7.5ppm (0.02 克/度),由於系統並未設置 SCR 因此 NOx 排放量較高。

Prenflo 氣化爐

Prenflo氣化爐(如圖 32)原係由 Shell與 Krupp-Koppers 公司合作共同開發,其氣化製程與 Shell SCGP 係出同源,均為 Oxygen-blown、乾式進料(以 N2 作為粉煤傳送介質),燃料進料點為氣化爐腹部,有 4 個進料口,氣化爐壁採水牆管式, Prenflo與 Shell SCGP 唯一的差異為高壓蒸汽管路位置, Prenflo置於氣化爐最頂部,而 Shell SCGP 則置於氣化爐外。合成氣除塵系統採 Candle Filter 型式。

氣化合成氣之化學組成 CO 約佔 60%、H2 約佔 22%,每小時合成氣產 能約 413,770M3。

圖 32、Prenflo 氣化爐

未來 CO2 捕捉與產氫計畫

Elcogas 公司將結合 University of Castilla la Mancha、Empresarios Agrupados、 Técnicas Reunidas、INCAR-CSIC 及 CIEMAT 等學術研究機構,擬於 Elcogas IGCC 電廠設置 CO2 捕捉及製氫之示範廠,計畫預計投資 1,900 萬歐元, 計畫宗旨希望能將 CO2 捕捉概在工業界念普及化,對新一代 IGCC 發電 技術建立 CO2 捕捉技術有所幫助,並建立 Elcogas 電廠成爲歐洲最具前 導技術的地位。本項計畫也將評估 CO2 捕捉分離技術商業化能力,以及 扮演尙未商業化前示範性角色。圖 33、34 爲流程圖與廠區佈置圖。

圖 33、增設 CO2 捕捉與製氫流程圖

圖 34、新設 CO2 捕捉與製氫廠區位置圖

二、運轉可用率(Availability)分析

Elcogas IGCC 電廠於 1993 年開始動工,1996 年 4 月開始燃用天然氣試運 轉,1996 年 10 月複循環機組燃天然氣商轉,1998 年 3 月首次以 syngas 發電。由於 V94.3 氣渦輪機燃用合成氣時的燃燒振動問題,西門子公司已 根據在荷蘭 Buggeenum IGCC 機組中 V94.2 氣渦輪機燃用合成氣時遇到的 問題和改進經驗,對燃燒室進行改進,並已於 2000 年 3 月完成氣渦輪機 性能效率試驗。由於該廠氧氣採 100%整合設計,其控制系統與操作上 較爲複雜。因此也頻頻產生故障,以去年 2006 年爲例,全廠可用率僅達 52%,計畫性檢修約佔 17.4%,非計畫性故障檢修約佔 30.6%,其中氣 化爐可用率約 65%,電廠部分可用率約 68%,ASU 部分可用率約 80.8 %。(詳圖 35)

圖 35、2006 年電廠可用率分析圖

進一步就故障檢修部分進行分析,氣化系統約佔48.4%、複循環發電部 分約佔41.4%、ASU部分約佔5.8%而其他輔機則佔4.4%。其中氣化系 統主要故障因素為除塵系統(佔氣化系統故障之34.56%)、蒸汽鍋爐系 統(佔氣化系統故障22.4%),而複循環發電部分主要故障幾乎均為氣渦 輪機(佔複循環系統故障94.78%)。 Elcogas IGCC 電廠主要故障原因分述如下:

1. 氣渦輪機部分(GT):

氣渦輪機在燃用合成氣(syngas)時,GT 噴嘴經常會有過熱與 humming 的現象,因此時常被迫停機檢修。Seimens 公司為避免類似情況一再 發生,已著手進行 GT 噴嘴最佳化設計,改善後 GT 燃燒將更穩定, 熱原件(hot components)壽命也更長。(圖 36、GT 噴嘴改善前後比 較圖)

圖 36、GT 噴嘴改善前後比較圖

氣渦輪機燃氣通道,由於合成氣燃氣溫度高,每燃燒合成氣500~1000 小時,必須更換煙道內隔熱陶瓷,更換頻率太高,導致氣渦輪機可 率大幅降低,圖37顯示煙道內受熱過度需更換隔熱陶瓷照片。

圖 37、煙道內隔熱陶瓷

2. 氣化爐內水牆管破管漏水問題:

Prenflo氣化爐採水牆管式,由於管路設計水牆管內水流不順堵塞、 管路腐蝕、化學藥劑成分控制以及零件鬆脫等因素,經常導致氣化 爐內水牆管破管漏水。

3. 氣化爐內漏氣(Gas leakage)問題:

由於管路腐蝕以及金屬熱應力,經常造成管路裂縫而產生漏氣(Gas leakage)問題,目前正更換管路材料,避免經常發生類似情形。

4. 氣化爐內廢熱交換器堵塞問題:

目前氣化爐內廢熱交換器之堵塞有兩種原因,分別爲黏著性飛灰 (Sticky fly ash)與絨毛性飛灰(Fluffy fly ash),要減少黏著性飛灰的 產生必須降低合成氣煙氣進氣溫度,加強 Syngas quench 流量;要減 少絨毛性飛灰的產生,則必須加快合成氣煙氣的流速。圖 38 分別顯 示氣化爐內廢熱交換器因黏著性飛灰與絨毛性飛灰堵塞之情形。

圖 38、左圖爲黏著性飛灰堵塞,右圖爲絨毛性飛灰堵塞

5. 磨煤與混煤系統:

本廠使用煤炭(50%)與石油焦(50%)為燃料,進入磨煤與混煤系統時往往由於設備強度不足,經常造成堵塞情形。

6. 溶渣(Slag)系統設備磨損:

由於高速排渣經常造成排渣系統設備磨損,未來排渣系統將改為高 耐磨性材質,並變更排渣系統操作程序。

7. 除塵陶瓷過濾器(Ceramic filter)使用壽命太短:

Prenflo氣化除塵系統採用陶瓷過濾器(Ceramic filter),原設計陶瓷過 濾器使用壽命約 8000 小時,實際運轉結果僅達原預期一半約 4000 小時,陶瓷過濾器成本非常高,經常更換除降低可用率外,也大幅增 加發電成本。目前將改良陶瓷過濾器支撐系統設計(supporting design),期望可增加其使用壽命。

8. COS 觸媒:

原本 COS 採用氧化鋁作爲觸媒,每年必須更換 2~3 次,未來擬改以 鈦氧化物作爲觸媒後,預計可使用 3~4 年才需更換。

伍、心得與建議

一、參加德國 IEC 第二屆國際 IGCC & XtL 技術研討會

- 1、本次參加德國 IEC 第二屆國際 IGCC & XtL 技術研討會,共有 38 場 專題討論,內容針對當今世界上最新之 IGCC 電廠技術、氣化製程、 合成氣(Syngas)應用技術以及二氧化碳捕捉技術等內容進行討論,會 議內容相當豐富,收穫甚多,唯一的遺憾是本會議仍以歐洲之技術 發展為主,對於美、日 IGCC 技術發展或電廠興建報導比重略顯不足。
- 2、IGCC發電技術中「化工製程」扮演極重要角色,在整體發電系統內 不論設備的安裝與運轉維護,都需要有相當的經驗,以本公司爲例, 所有技術經驗均以發電爲主,並無相關化工建廠與運轉經驗,本公 司未來若需引進IGCC技術前,必須先養成化工製程運轉經驗以及積 極培養化工人才。
- 3、本次會議中曾私下與Shell公司氣化部總裁尼可拉斯先生,進行IGCC 發電技術意見交換,Shell公司表示歐洲盛產褐煤,且燃料價格便宜, 在發展IGCC上有其優勢,而台灣煤炭多為進口,且進口煤炭為High Rank 煙煤,燃料價格較高,若採用IGCC發電成本太高,建議台灣 現階段若引進IGCC應與石化煉製廠結合,以石化煉製後之廢棄物為 原料,採汽電共生方式建廠較適合。至於台電公司(Utility)應俟CO2 儲存技術成熟後,直接採用IGCC with CCS 對台電才有引進利基。
- 4、本次會議內容有分析超臨界燃煤機組與IGCC技術採用CO2捕捉技 術之比較,在EPRI報告中SCPC之CO2捕捉成本(燃燒後捕捉)並 無明顯或大幅高於IGCC技術(燃燒前捕捉)CO2捕捉成本之情形。 且美國已有數座傳統燃煤電廠,設置CO2捕捉設備,CO2捕捉效率 達90%,運轉情況也已具商業化水準,因此建議本公司可參考設置 CO2捕捉設備之燃煤超臨界電廠之運轉經驗,俟CO2儲存技術成熟

後,可作爲本公司後續引進 CO2 捕捉設備的選項之一。

- 5、在 IGCC 設置成本方面目前仍高於燃煤超臨界機組 20%以上,在不考慮 CO2 捕捉成本時,IGCC 發電成本也高於燃煤超臨界機組 20%左右,且 IGCC 可用率尚未達商業化標準,雖然 IGCC 具有低污染排放優點,以目前 SCPC 污染防治設備技術,也大都能符合法規要求,因此就成本考量,本公司現階段應仍以燃煤超臨界為首選。
- 6、在本公司 IGCC 引進時機方面,由於本公司並非設備製造商,煤炭也 都仰賴進口。近年來國際燃料價格大幅上漲,本公司營運狀況愈來愈 困難,任何投資必須更加審慎,因此建議在 IGCC 發電技術未達商業 化運轉可用率前,本公司持續關注 IGCC 發展情勢,俟技術成熟、經 濟性具優勢後,再引進本公司較為有利。

二、 參訪西班牙 Elcogas IGCC 發電廠

- 1、西班牙 Elcogas IGCC 發電廠是目前全球最大的燃煤 IGCC 示範性電廠,至今已運轉8年,本次參訪過程中廠方對於該廠目前運轉遭遇的問題,都能詳盡說明,也獲取許多寶貴運轉資料與數據。Elcogas IGCC 電廠有接受電網調度,爲提升調度可用率,採合成氣與天然氣雙燒設計,取代設置備用氣化爐提升可用率,未來本公司規劃時可做爲參考。
- 2、進料多元化是 IGCC 發電系統的特性之一,而近年來完工運轉之大型 IGCC 發電系統又大多屬於以石油焦、殘渣油等非煤炭進料的設計, 這顯示以低價非煤能源為進料的 IGCC 發電系統應該具有較佳之經 濟性。因此,未來本公司規劃評估 IGCC 發電系統時,可考慮結合石 化廠以石油焦、殘渣油等非煤進料一倂納入考量。
- 3、Elcogas IGCC 電廠是目前大型燃煤 IGCC 電廠中(Buggenum、Wabash、 Polk 與 Elcogas)可用率最低者(詳圖 39),全廠始終無法突破 60%

以上,而其他三座燃煤 IGCC 示範電廠近年來全廠可用率約在 70% 左右,二者差異探究其原因,大部分來自於 Seimens GT 94.3 的問題, 因此本公司未來採用 IGCC 時 GT 的選擇對發電設備可用率影響很 大。

圖 39、燃煤 IGCC 電廠可用率比較趨勢圖