出國報告(出國類別:其他)

赴美參加第 31 屆 Cocoa Beach 先進陶瓷與 複合材料國際研討會暨第四屆固態氧化物 燃料電池材料與技術國際論壇

服務機關:行政院原子能委員會核能研究所

派赴國家:美國

- 出國期間:95.01.21~95.01.29
- 報告日期:95.03.28

姓名職稱:李堅雄/研究員、林泰男/副工程師

摘 要

美國陶瓷學會第 31 屆 Cocoa Beach 先進陶瓷與複合材料國際研討會暨第 4 屆固態氧化物 燃料電池材料與技術國際論壇,於 2007 年 1 月 21 至 27 日在在佛羅里達州代托那海灘(Daytona Beach)市舉行。核能研究所受大會邀請演講,由李堅雄博士代表宣讀論文,題目為"SOFC Development at INER",介紹核能研究所 SOFC 研發近況與未來展望。

參加第 4 屆固態氧化物燃料電池材料與技術國際論壇之各國專家學者,有來自美國、日本、德國、韓國、芬蘭、丹麥、西班牙、羅馬尼亞、印度、伊朗、義大利、亞美尼亞、法國、巴西、英國、新加坡、澳洲、烏克蘭、加拿大、台灣、中國大陸等國家地區,共計有 108 篇 口頭報告論文以及 28 篇海報論文發表。整個會議包括以下十五個分項主題:1 SOFC: Plenary; 2 Performances of Cells and Stacks I; 3 Performances of Cells and Stacks II; 4 Seals; 5 S3 Poster Session; 6 Electrodes I; 7 Electrodes II; 8 Interconnects/Coatings; 9 Novel Cell/Stack Design; 10 Reactions/Material Transport/Electrode Poisoning; 11 Oxide and Proton Conductors/Conduction Mechanisms; 12 Fabrication of Cells/Stacks; 13 Processing of Cell/Stack Materials; 14 Fuel Processing/Reforming; 15 Mechanical Behavior; 16 Reliability/Degradation。

參加本次會議,可以更廣泛的瞭解國際上各國在固態氧化物燃料電池上的研發現況,收 集國際研發資訊,協助核能研究所計畫推動及未來策略擬定;在會議期間分別與 GE Dr. Minh、FZJ Dr. Nabielek、及 PNNL Dr. Prabhakar Singh 討論:推動驗証大型 SOFC 系統之規 劃構想、可能之執行策略、及未來合作研究之可行性。

目 次

(頁碼)

摘要	
目 次	
圖目	錄・・・・・・・・・・・・・・・・・・・・・・・・・・・・iii
表 目	錄・・・・・・・・・・・・・・・・・・・・・・・・・・・iv
一、目	的 · · · · · · · · · · · · · · · · · · ·
二、過	程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2
三、心	得・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
四、建	議 事 項・・・・・・・・・・・・・・・・・・・・・・・・・・・・19
五、附	件
附	件 1. 李堅雄博士之會議報告內容: SOFC Development at INER · · · · · · 20
附	件 2. FZJ Dr. Nabielek 報告內容: Reducing degradation effects in SOFC stacks
	manufactured at FZJ-approaches and results • • • • • • • • • • • • • • • • • • •
附	件 3. PNNL Dr. Singh 報告內容: Corr of Metals and Alloys under SOFC Interconnect
	Exposure Conditions $\cdot \cdot \cdot$

圖 目 錄

(頁碼)

圕	1.	幾械融合法(Mechanofusion)的原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
昌	2.	幾械融合法處理 LSM-SDC 之電性表現・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
昌	3.	固態反應法: 超聲波與沉降法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
昌	4.	上面積電阻(ASR, area specific resistance) · · · · · · · · · · · · · · · · · · ·	
圕	5.	夏度對比面積電阻之影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11	
圕	6.	含極滲透法實驗配置設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
圕	7.1	uddlesden-Popper 層狀鎳基氧化物材料之相穩定評估・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
圕	8. 1	unction layer 的概念與圖示・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
圕	9.	単極雙極或雙向氣氛下之以及模擬重組氣氛下的腐蝕行為・・・・・・・・・・13	
昌	10.	微管型 SOFC(micro tubular SOFC)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
圕	11.	Fabrication of Honeycomb-type Cells · · · · · · · · · · · · · · · · · ·	
圕	12.	Honeycomb-Type SOFC integrated with Multi Micro Cells $\cdot \cdot \cdot$	
圕	13.	KIST 的各種尺寸單電池・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・15	
圕	14	SOEC 與 SOFC 的比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
圕	15.	SOEC 經濟效益評估表・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
昌	16.	を氫成本評估・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
啚	17	syngas 實驗參數・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17	
圕	18	syngas 電池組測試示意圖・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

一、目 的

高溫固態氧化物燃料電池(SOFC),藉由電化學的反應及固態電解質傳導氧離子的功能, 產生電流。SOFC 具有高能源轉換效率(40~60%)、低污染氣體排放、多元化靈活燃料使用之 優點,可結合渦輪機發電系統及生質酒精,使用多元化之進氣燃料,提供分散式發電系統之 基載電力,及紓解能源使用對環境所造成的影響。SOFC 技術研發現况是屬於市場發展之初 期,其產品商業化所面臨之挑戰包括:高的製造成本、複雜的製造技術、零組件工業之投資、 產品效能的衰減、使用期限的延長及可靠度。核能研究所積極推動 SOFC 發電系統市場商品 化之研發,亟思積極瞭解先進國家技術開發現況與未來展望,因此參加第 31 屆 Cocoa Beach 先進陶瓷與複合材料國際研討會暨第 4 屆固態氧化物燃料電池材料與技術國際論壇,藉由論 文發表以及議程參,以瞭解目前世界各國最新研發成果及重點方向。會議期間分別與美國 GE 公司之 Dr. Minh、德國 FZJ 之 Dr. Nabielek、及美國 PNNL 國家實驗室之 Dr. Prabhakar Singh 討論,提及在核能研究所規劃大型 SOFC 驗証系統之構想、策略、及未來合作研究之可行性。

二、過 程

本次出國公差時間自 95 年 1 月 20 日至 95 年 1 月 29 日共計 10 天,行程如下:

日期	工作重點					
95/01/20	往程: 台北—舊金山—亞特蘭大					
95/01/21	往程: 亞特蘭大—佛羅里達州代托那海灘市					
	登記註冊第31屆 Cocoa Beach 先進陶瓷與複合材料國際研討會暨第4屆					
	固態氧化物燃料電池材料與技術國際論壇					
95/01/22~95/01/26 1. 參加第 31 屆 Cocoa Beach 先進陶瓷與複合材料國際研討會暨第						
	固態氧化物燃料電池材料與技術國際論壇					
	2. 受大會邀請發表論文" SOFC Development at INER"					
	3. 與國外專家學者交換研發經驗及商談合作研究事宜					
95/01/27~95/01/29	返程:佛羅里達州代托那海灘市—亞特蘭大—洛杉磯—台北					

三、心 得

(一)、研發資訊

第 31 屆 Cocoa Beach 先進陶瓷與複合材料國際研討會暨第 4 屆固態氧化物燃料電池材料 與技術國際論壇,於 2007 年 1 月 21 至 27 日,在佛羅里達州代托那海灘(Daytona Beach)市舉 行。本次大會以固態氧化物燃料電池為最主要議程,本所受大會邀請演講,由李堅雄博士代 表宣讀論文,題目為"SOFC Development at INER",介紹本所 SOFC 研發近況與未來展望(附 件 1),聽講人員踴躍,反應良好,大會並請本所明年參加會議,除了邀請演講外,亦能多發 表些論文。於今年 3 月 10 日收到 International Journal of Applied Ceramic Technology (ACT)的 主編來函,肯定本所研發成果之品質,希望我們能接受其邀請,將在會議發表之論文,可以 刊登在 ACT 期刊,已回函同意。

參加本次會議,增進國際 SOFC 研發趨勢之瞭解及相關資訊之收集,茲將印象深刻之研 發資訊含括:中低溫 SOFC-MEA 材料研發現況、德國 FZJ 降低 SOFC 電池堆性能衰減效應之 研究、美國 PNNL 對 SOFC 連接板之金屬與合金材料腐蝕之研究、日本 AIST 開發中低溫 SOFC 之高活性材料(<650°C)及微管型 SOFC 模組、韓國科學技術研究院(KIST)研發 SOFC 之現况、 丹麥 Risø 對固態氧化物電解電池(SOEC, solid oxide electrolysis cell)之研發、及美國西北大學 以天然氣爲燃料利用 SOFC 電池產生合成氣(syngas)的研究,分別摘要說明如下:

1. 中低溫 SOFC-MEA 材料研發現況

高效能且能運轉在中低温度(500~650°C)之 SOFC 電池材料,是目前研發之主流,兹將陰極材料、電解質材料、及陽極材料之研發分別說明如下。

(1) 陰極材料

PNNL的 Dr. Simner 等人針對傳統與新型陰極材料深入的研究,探討其特性與最佳 化條件的開發,他們利用一種乾式粉體複合技術,機械融合法(mechanofusion,圖 1), 將尺寸較小之離子電導或混合電導材料披覆在尺寸較大之電子電導材料之上,希望藉以 提高發電密度與長期穩定性。該方法一是將 sub-micron 之鑭鍶鈷鐵氧化物(LSCF)披覆在 原子尺度的銀粒子(Ag,10~50μm)上,能夠使電池在 EIS Data 的表現上,Ohmic 電組降 低 27 倍(3.2 to 0.12 ohm-cm²),非 Ohmic 極化降低 4 倍(1.5 to 0.36 ohm-cm²),雖然在高 溫使用與長期穩定性上仍有不足,但是利用銀在低溫陰極材料上的可行性得到證實;另 一是將 SDC(<50nm)粒子披覆在 LSM 粉末(1~2μm)上,其發電密度 0.5W/cm² @ 250hr, 相較於一般粉末混合之 LSM-SDC 與單純 LSM 為陰極材料的 0.4 與 0.3 W/cm² @ 250hr 來得高(圖 2)。機械融合法是一經濟及可量化的製程,但是仍需考慮參數之最佳化,如 SDC 的比例與批覆的厚度、LSM 與 SDC 原料粉末的尺寸以及燒結溫度等等。

University of Florida 的 Dr. Camaratt 的研究指出, Bi₂Ru₂O₇(BRO7)-Bi_{1.6}Er_{0.4}O₃(ESB20) 是中溫固態氧化物燃料電池應用上之潛力材料, 陰極材料必須具有還原能力較陽極氧化 速率慢的特點,因此陰極材料的選定是降低操作溫度的關鍵。利用超聲波(sonication)與 沉降(sedimentation)的等固態反應法可得到不同尺寸之 BRO7 與 ESB20 粉末(圖 3)。研究 結果指出, BRO-ESB 複合陰極材料若全以小粒徑組成者在 625°C 下可得最小之比面積 電阻(ASR, area specific resistance) 0.1 ohm-cm²(圖 4);對厚度效應而言,較大之 BRO7 顆粒之複合粉末其比面積電阻隨著厚度增加而下降超過一個數量級(圖 5)。

Lawrence Berkerly National Lab的研究人員利用陰極滲透(cathode infiltration)方式改善 MEA 在低溫操作的性能(圖 6),此一概念與李茂傳博士實驗室近期提出之研發方向一致。他們在陰極支撐型電池以真空滲透的方式在陽極滲入 Ce 以及 Ru,藉此改善陽極高溫抗硫化性。

(2) 電解質材料

LSGM 電解質被証實可以在 600°C 還能達到高發電密度,針對此一電解質特性開發 西北大學的研究人員 Y. Lin 提出了以 La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_{2.7}-La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.1}O_{2.75} 複合 物為陰極材料的研究成果。陰極材料含 70 wt% LSGM 並燒結溫度為 1100°C 時,於 650°C 測得最低的極化電組為 0.2 Ohm-cm²,並且在長時間測試下開路電壓(OCV)穩定而電流 密度維持在 0.5 A/cm², LSGM 粉末尺寸較小者有較小之極化電阻。具 LSGM 電解質與 LSCF-LSGM 複合陰極的單電池測試結果,在 650°C 氫氣環境下其發電功率密度為 0.6W/ cm²。

(3) 陽極材料

SOFCo-EFS Holdings LLC 以及 Trans Tech Inc. 的 Dr. Goettler 等人研究 Ruddlesden-Popper 層狀鎳基氧化物材料在中溫及高溫的使用情形(圖 7)。

賓州大學的研究人員利用在陽極與電解質間置入一功能層(functional layer),研究不同厚度之功能層的效果,最佳之功能層厚度為10μm,浸滲40 wt% CeO₂以增加電導性,同時驂雜1 wt% Pd 以增加催化效能(圖 8)。

2. 德國 FZJ 降低 SOFC 電池堆性能衰減效應之研究 (附件 2)

平板陽極支撐型電池(anode support cell)由於有相當薄之 YSZ 電解質層使得其在低溫操作 有很高的發電效率,德國 FZJ 在陽極支撐型膜電極組(membrane electrode assembly)的研發 製程包含有熱壓 and/or 帶鑄法製備陽極基板、真空帶鑄法製備電解質、網印法製作陰極, 這些製造方式與程序已標準化且可生產出在長期操作下穩定可靠與電化學表現良好的膜 電極組。單電池尺寸有 5x5、10x10 以及 20x20cm²,電池堆最多可由 60 個單電池堆疊組 合而成,並已測試超過 250 個電池堆組合。Dr. Heinz Nabielek 發表"FZJ 降低 SOFC 電池 堆性能衰減效應之研究"論文,整體回顧 FZJ 從 1995 年到 2006 年間,研究 SOFC 長期運 轉性能衰減之機制、其改善方向與成效。FZJ 就陰極、電解質、陽極、連接板、封裝材料、 接觸面積、接觸電阻等方面,定性及定量探討造成 SOFC 性能衰減之原因(表 1),其中最 主要減少電池堆性能衰減的影響有三,分別為 Chromium poisoning、Sulfur poisoning 與 re-oxidation,這些技術資訊,對於我們正在從事之相關研究,頗具參考價值。

3. 美國 PNNL 對 SOFC 連接板之金屬與合金材料腐蝕之研究 (附件 3)

PNNL Dr. Singh 發表"SOFC 連接板之金屬與合金材料腐蝕"之研究,主要探討金屬連接板 材料,在單極雙極或雙向氣氛下之以及模擬重組氣氛下的腐蝕行為(圖 9)。高溫抗氧化合 金是 SOFC 連接板常用之材料,SOFC 操作運轉時,金屬連接板瞬間在陰極端暴露在空氣 中而在陽極端暴露在氫氣或碳氫燃料之下,同時也與封裝材料接觸。因此除了在空氣端需 抗環境氧化能力與在燃料端避兒還原之外,亦需考量氫氣濃度梯度之下的穩定性與發電效 率的弱化。他們發現在雙向暴露與單向暴露其氧化腐蝕行為表現不同;在 H2llair 雙向暴 露環境下,Fe-Cr 基合金材料會形成氧化鐵,這在 reformate II air 環境下不會發生,主因為 氫氣濃度梯度較低。對 Ni-Cr 合金來說,雙向暴露傾向於增進附著能力。

4. 日本國立先進產業科學研究所(AIST)開發中低溫 SOFC 之高活性材料(<650℃)及微管型 SOFC 模組

日本 AIST 的 Dr. Yamaguchi 指出傳統 SOFC 的三大問題為:電池啓動-停止的議題 (startup-stop of Cell)、高溫操作的 durability、以及成本降低,並提出解決方案分為使用小 尺寸的單元電池、開發新材料與新結構、以及改善單位體積的發電功率密度。開發微管型 SOFC(micro tubular SOFC)(圖 10)與電池堆組合最佳化;以及開發 Honeycomb type SOFC 與 Multi Microcell 製程與性質探討是 AIST 研發 SOFC 模組之兩大主軸。此創新的製程, 利用擠型的觀念製作出陰極微管,密度為 700 cpsi(channels per square inch),管壁厚

200 m,以 Dip coating 鍍上電解質材料在 1573K 共燒,塗上陽極 slurry NiO-GDC 於更高 溫度燒結(圖 11)。完成之結構為電池密度 1000 cpsi,陰極、電解質、陽極厚度分為 160、 10、20 μm,在 823K 時操作其體積發電功率密度為 2W/cc(圖 12)。AIST 在 2005~2010 年 的主要研發計劃包含有:1.開發低溫 SOFC 之高活性材料(<650°C);2.研發三維尺度的製 程技術;3.評估原型電池模組(prototype)與先進陶瓷反應器的應用。

5. 韓國科學技術研究院(KIST)研發 SOFC 之現况

韓國科學技術研究院(KIST)於 1992 年即開始 SOFC 方面的研究,目標在研發商業化之 SOFC 電池堆,應用在汽車之輔助電力 APU、住商分散式發電、及與渦輪機結合之發電站。 KIST 發展研製之 ASC 單元電池 10X10 cm² 厚度 0.6mm 在 650°C,0.7V 時功率密度達 567mW/ cm²,在 OCV 1.1V 經過 100 次的 thermal cycle 運轉,電池性能仍可維持。在電 池堆方面,已建立 500W (10X10 cm²) 電池堆設計及組裝技術(包括連接板及玻璃封裝材 料),根據 PNNL Dr. Prabhakar Singh 的告知,韓國規劃投資四百萬美金進行國際合作 SOFC 研究,以加速其達到 SOFC 發電商業化之目標。圖 13 為 KIST 的各種尺寸單電池。

6. 丹麥 Risø 對固態氧化物電解電池(SOEC, solid oxide electrolysis cell)之研發

Riso的研究報告指出,再生能源(如風能、太陽能、儲氫)的利用最大的障礙在於轉換效率 低以及能量儲存形式不適合等問題。可逆反應之固態氧化物燃料電池(SOFC, solid oxide fuel cell),使用在高溫電解質材料(HT electrolyzer)上的固態氧化物膜(membrane)由於電解 反映部分能量轉移,有效率的產氫,為固態氧化物電解電池(SOEC, solid oxide electrolysis cell)。SOEC 可高溫電解水產出氫,產出的氫可供應於高效率 SOFC 使用(圖 14)。同時 SOEC 可將 CO₂分解成 CO+O₂,亦即高溫蒸氣與 CO₂ 可電解為 H₂與 CO 混合氣(syngas),並可 產生其他含氫能量載體,如甲醇(methanol)與甲烷(methane)。研究人員針對高溫電解水蒸 氣與二氧化碳產生氫氣與甲烷作探討,並評估出最佳狀態下假設電價為 3.6 US\$/GJ,產氫 成本 4.8 US\$/GJ,相當於利用每桶原油的成本 29 US\$/barrel crude oil:產甲烷成本預估為 7.8 US\$/GJ,則相當於利用每桶原油的成本 48 US\$/barrel crude oil。SOEC 的經濟效益如圖 15、16 所示。SOEC 需克服的包含了氫氣電極(Ni+YSZ)在高溫高電流密度(4 A/cm²)下操作 之穩定性、陽極 Redox tolerance 的改善等等。

7. 美國西北大學以天然氣為燃料利用 SOFC 電池產生合成氣(syngas)的研究 美國西北大學的 Dr. Pillai等人探討以天然氣(natural gas)為燃料利用 SOFC 電池產生合成氣 (syngas)的研究。SOFC 可作為以天然氣為燃料之 syngas generator 乃由於其形成電化學部 份氧化(EPOx, electrochemical partial oxidation),其電化學反應產生汽電共生效應 (co-generation, electricity and syngas),如此可有效率的利用天然氣降低成本並提升 SOFC 電池堆的應用價值。圖 17、18 為 syngas 實驗細節與電池組測試示意圖。研究指出,有 barrier layer 當作 catalytst 能使 syngas 的產出穩定,並且在 EPOx 情形之下汽電共生效應的發生 被證實: syngas 產生量為 32 sccm/cm²,電力輸出為 0.9 W/cm²。Catalyst layer 與 Barrier layer 需尋找更穩定適用的材料使得 syngas 產出達到最佳化,替代的陽極材料也是改善的方式 之一。

(二)、合作討論

此次受邀代表本所出國參加第 31 屆 Cocoa Beach 先進陶瓷與複合材料國際研討會暨第 4 屆固態氧化物燃料電池材料與技術國際論壇,主要目的在擴大國際交流與促進國際合作,並 收集國際研發資訊協助本所 SOFC 計畫推動與未來策略擬定。建議事項與會談結論如下:

- 經由本所以往主辦之 SOFC Workshop 所建立之人脈關係,在此次會議從受邀過程與議程 中之個別會談,皆有實質的幫助。藉由參與國際性的研討會不僅可以瞭解最新的研發趨勢 與現況,更能活化此項人脈網絡,達到國際交流合作的目的。對於本所 SOFC 計畫的研究 發展來說,日後仍應積極規劃參與相關國際性的技術研討會議。
- 會議期間分別與美國 GE 公司之 Dr. Minh、德國 FZJ 之 Dr. Nabielek、及美國 PNNL 國家 實驗室之 Dr. Prabhakar Singh 討論,提及在核能研究所規劃大型 SOFC 驗証系統之構想、 策略、及未來合作研究之可行性。

(1) Dr. Minh 認同本所長程 SOFC 研發規劃,發展 20~50kW SOFC 驗証系統亦是目前國際 趨勢,由於 GE 參加 SECA 計畫研發之技術不能外流至其他國家,正式與 GE 之 SOFC 團 隊合作是不可能,他願意以私人身份提供技術諮詢。

(2) Dr. Nabielek 表示 FZJ 本年度之計畫負荷已滿載,要商討明年本所與 FZJ 合作是有空間。Nabielek 在今年 6 月退休,目前已有一些研究機構請他做短期顧問,是否需要請 Nabielek 來所短期指導 SOFC 之研發工作,是值得評估。

(3) Dr. Prabhakar Singh 認同本所發展 SOFC 產品商業化之企圖心,及對臺灣工業界之價格 降低量產技術亦有肯定。Prabhakar 有意願促成 PNNL 與核研所在 SOFC 技術合作研究,

及美國與台灣 SOFC 工業團隊合作量產技術。在會議期間 Prabhakar 撰寫 5 年的合作研發 25~50kW 發電系統之構想初稿,供本所參考,如有需要,亦願意來所討論合作研究之議 題。

四、建議事項

參加第4屆固態氧化物燃料電池材料與技術國際論壇,藉由論文發表以及議程參與,不僅可以瞭解最新的研發趨勢與現況; International Journal of Applied Ceramic Technology (ACT)的 主編來函,邀請在會議發表之論文,刊登在ACT期刊,更能展示本所研發成果,達到國際交 流合作的目的。本所 SOFC 計畫的研究發展必須與國際接軌,日後仍應積極規劃參與相關國 際性的研討會議,並鼓勵同仁在國際會議上多發表論文,達到國際交流並提升核研所所譽。

圖 1. 機械融合法(Mechanofusion)的原理

圖 2. 機械融合法處理 LSM-SDC 之電性表現

圖 3. 固態反應法: 超聲波與沉降法

圖 4. 比面積電阻(ASR, area specific resistance)

圖 5. 厚度對比面積電阻之影響

圖 6. 陰極滲透法實驗配置設計

圖 7. Ruddlesden-Popper 層狀鎳基氧化物材料之相穩定評估

圖 8. Function layer 的概念與圖示

表 1 Overview of the main SOFC stack degradation mechanisms

圖 9. 單極雙極或雙向氣氛下之以及模擬重組氣氛下的腐蝕行為

圖 10. 微管型 SOFC(micro tubular SOFC)

圖 11. Fabrication of Honeycomb-type Cells

圖 12. Honeycomb-Type SOFC integrated with Multi Micro Cells

圖 13. KIST 的各種尺寸單電池

圖 14. SOEC 與 SOFC 的比較

timation of econe	omic potential of	f SO
SOC stark	2100 USSie 118 area	-
Arrestment cout	\$380 UDSINF cell area"	
Referent titte	35	
Degree advort fame	10 years.	
Open attent filme	Syears.	
Demiseralised Water cost	2.3 (2051):63	
Chrytreety price	1.3USERWIN (3.8USSIGUE	
Cell temperature	M58-C	-
Cell voltage, current density (1.40 V (F. L -15 A/cm/	-
N.C. settlications in the ROC strat.R.	30%	-
PERSONAL PROPERTY AND ADDRESS OF A DESCRIPTION OF A DESCR		

圖 15. SOEC 經濟效益評估表

圖 16. 產氫成本評估

圖 18. syngas 電池組測試示意圖

附件 1. 李堅雄博士之會議報告: SOFC Development at INER

- 2. R&D Target
- 3. Research Team
- 4. Current Research Activities of INER
- 5. R&D Collaboration in SOFC Core Technology
- 6. Conclusion

1. Background (cont.)- SOFC Contribution

Energy security

- Diversify primary energy resource (SOFC fuels including natural gas, biomass ethanol, dissel, etc.)

- Improve energy efficiency (SOFC fuels includin natural gas, biomass ethanol, diesel, etc.)
 Improve energy efficiency (SOFC efficiency about 40 ~ 60% and over 80% with heat utilization)
 Distributed power station (SOFC power up to 100 kW)
 Central power station (Coal based IGCC+SOFC power designed to 100 MW)

Environmental Quality

• Less CO2; Less SOx, Less NOx

Economic growth

- New technology creates new industriesEnhancement of national prestige in energy development

2. R	& D Tai	r get (cont'o	d) — Propos	ed Roadmap	NER
	Phase I	Phase II	Phase III	Phase IV	
	Small System	Scale-up System	SOFC+Turbine	Coal Based	
	R&D	Market Penetration	Market Diffusion	Central Generation Market Penetration	
2005 20		10 20 [.]	20 20	25	
Power	1~5kW	250 kW	1 MW	100MW	
Efficiency	40%	50%	60~70% Hybrid	Coal based efficiency 60%	
Durability	4,000 hrs	40,000 hrs	5 years stack life, 25 years system life		
Degradation rate	0.5% / 1,000 hr	0.1% / 1,000hr			
Operation Temp.	750°C	650°C			
					8

3. Research Team -INER Strategic Allia	
NTHU Plasma spray of membras structure analysis V2U Innovativg material Structure design	International Collaboration • ECN • FZJ • EPFL
HOU Protective coating technique A threadertraiten wechanical testing WSOFC Lab Test Wicro-chaniels analysis (INER)	• HTceramix / EPFL
NTHU SOFC stack simulation & design MICC-turbine generation system CSC Cooperative CSC Manufacturer Manufacturer	InDEC / ECN

		2005	2008	2007	2008	2009	2010	2011	2012	2013	2014
Upstream	Advanced & innovative material and process development(500-650°C)	Tape cas Assembl PEN Power de	ting / Atmo y testing esity	sphere Plas and techno 100 mW	ma Spray (blogy for)	APS) micro-grade 300 mW/cm ²			1 Wcm ²		2W/orr
	SOFC PEN.stack.components development (650-800 °C)	Tape cas Power di	ting / APS esity 300	mWcm ²	500mW/cm ³	Long term	reliability to	sting and o	ost down		
		PEN, inte	erconnect,	stack, refor	ner						
Midstream	SOFC system	Optimizz	tion of SOF	eat exchang	er, sequen	alvsis	Efficiency		l		
	SOFC kW-grade demon- stractive system and its	SOFC sy	stem	1 kW de	2 kW gradation (5 kW L5%/1,000hr	System rel	ability test	ing		
	simulation					SOFC+mic	ro-turbine s	ystem			250 k
		PEN mat	is producti	on techniqu	e !	500mW/cm ²		Indu	stry cooper	ration and	cost dov
Downstream	Industry participation					kW-grade	stack mass	production 01%/1000hr	1		

4. Current Research Activities of INER (cont'd) Assembling and testing of SOFC Stack

I-V curve for a one-cell stack

4. Current Research Activities of INER (cont'd) –						
1 kW Lab Reformer	1 kW Compact Reformer	Feed: C ₂ H ₅ OH : 20.6 moles/hr H ₂ O : 42.8 moles/hr Air : 36.9 moles/hr Catalyst: monolithic (33 mm dia. X 90 mm iong)				
	Reference	Temperature Sample	Tin= 190 °C (Before Catalyst) Tout=439 °C (After Catalyst)			
	Ethanol 200	H ₂	40.66			
Party and the second se		CH,	3.57			
		CO	9.29			
Reformer Evaporators	Ethanol	N2	25.52			
		CO2	17.16			
		C'H*	1.51			
Condenser Carlos M		C ₂ H ₆	1.99			
	Evaporator Reformer	> C4	0.13			
		Сунуон	0.17			

4. Current Research Activities of INER (cont'd) Feasibility study of 25-50 kW demonstration system	
Estimate the SOFC Early Market Potential for the Distributed	t l
SOFC Power System	
- SOFC Power/Year	
- Durability	
- Cost	
· Evaluate the Current Status of SOFC Core Technology for	the
25-50 kW SOFC Power System	
- PEN Power Density	
 Stack / System Scale – up Technology 	
- Degradation and Failure Management	
Propose a SOFC Power System Demonstration Program	
- System Technical Specification	
- Project Period	
- Budget Plan	
	25

- 5. R&D Collaboration in SOFC Core Technology (cont'd)-Some possible collaboration topics
 - Development of Interconnect and Sealant materials
 for SOFCs
 - Modeling, Simulation and Design of Functionally-Graded Structures (for Optimal Performance and Thermal/Mechanical Stability...)
 - Novel Materials for a New Generation of SOFCs
 (Low-Temperature SOFCs)

26

Design of Novel SOFC Stacks and Systems

Thank You for Your Attention 附件 2. FZJ Dr. Nabielek 報告內容: Reducing degradation effects in SOFC stacks manufactured at FZJ-approaches and results

			Forschungszentrum Jülie In der Heimholtz-Gemeinsch	ch 🥑
SOFC	stack design	at Forschungsze	ntrum Juelich	
	cell	repeating unit	etack	
	• anode sub • anode layer • efectrolyte layer • cathode layer			
	electrolyte ythis stabilized zi anole Ni / YSZ cormot carticole (La.SchMcO ₀ (La.SchCo.FeyO ₃	conis (YS2) anode contact layer cellination contact layer cellinations contact layer cellinations		
		interconnect and cell frame CreFer22AF seeding (Ba.Ca.Af) arcola contact layer N-mesh cathode contact layer (La.Sr)CoO	YU (JIS-3) Mitothe glass	
year	1005 1000 1000 1000 1000 1000 1000 1000	1000 1000 2000 2001 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03	2000 94 07 02 03 04 07 02 03 04 07 02 03 04 07 02 05 04	2008 GH (G2)
8 Design	B.Oreign	53		
C-Onter		Dealign 54		
D-Design		O Denige ##		
E Design		E Denign	36	
P.2WOR		,	Snigs	-
			in fraction 11	

	Forschungszentrum Jülich
20 kW SOFC System Developme	ent
Mod	lule-Components:
	SOFC-Stack
	Heating inte
Validation of stationary	Isolating plate
and transient behaviour	
with the help of dynamic	Detection plate
fluent modelling	After-butter
	Heating plate
	Air-pre-heater
	Deflection plate
	Deficition place
	Pre-reformer
Jeala - L - L - L - L	Interface
	L. ·
Fuel Cell Project	und IEF Zentralebteilung ZAT 7 Heinz Habbeit werchnik IEF Technologie ZAT 7 Dirykes, Jan 2007

SOFC degra	dation	Forschungszentrum Julich
Three phase boundary	Electrolyte	Anode side
reduction by	Phase	Ni-agglomeration
- Cr poisoning	instabilities	Ni-coarsening
 Particle sintering 		S poisoning
Phase changes	Interdiffusion	Interdiffusion
Interdiffusion		Destruction by re-oxidation
Contact degradation		Contact loss by
Cr transport		- by seal swelling
or danoport		- temp, gradient
		Resistivity
Interconnect:		Interconnect:
- Cr evaporation		- Scale resistance
- Corrosion cracking		- Emprittement by
- Inner oxidation		- Corrosion cracking
Ceramic glass sealant		
 Interaction with gaseous 	species/ contami	inants
 Interaction between con 	ponents	
- Leakage or short circuit	during mermai cy	cing

Cathode side contacts

- limit stack power
- contact area needs to be improved, particularly in the light weight design

Forschungszentrum Jülich

- better contact powders are available, but long-term performance has to be investigated
- new cathode contacting methods are under consideration
 design
 materials

Fuel Cell Project Min Projectaria PBZ Inductor Windowski ut IEF Zentralsking ZAT 18 Bernarkar an 300

附件 3. PNNL Dr.Singh 報告內容: Corr of Metals and Alloys under SOFC Interconnect Exposure Conditions

H ₂ O Formation in	SOFC: J	^z uel U	lillzei	ion noti					
Fuel flow									
$H_{2^{1}}CO, CHx$ $H_{2} \rightarrow H_{2}C$) H ₂	× H₂O		► H ₂ O, CO ₂					
	*0=]						
Fuel Utilization and P _{H20} increase									
	1120								
	Fuel Utilization F	PH2O/PH2 Id	gPO2/600	ogPO2/800					
	0	0.031	-26.89	-21.38					
$CH_{X} + H_{2}O = H_{2} + CO (Consumption of H_{2}O)$	20	0.28	-24.98	-19.46					
	40	0.724	-24.16	-18.64					
H ₂ + O ⁼ = H ₂ O (Production of H ₂ O)	- 60	1.56	-23.5	-17.98					
$CO + H_0O = CO_0 + H_0$ (Consumption of H ₀ O)	80	4.26	-22.62	-17.1					
	99	102.09	-19.87	-14.34					
	99.995	1999	-17.27	-11.76					
Consider H2-3%H2O Fuel Extreme		Beche N	Wiftsmed Nation U.S. Dosent	al Laboratory rent of Decrys -5					

Batelle

	M	etals and Alloys Studied
	1	Ferritic Stainless steels (Fe-Cr base) Foralloy-4.5%AI Crorez.222%Cr Crorez.222%Cr Crorez.22%ACr Crorez.22%Cr Crorez.2%Cr
	2	Ni-Base Alloys (Ni-Cr base) Haynes 242-9%Cr Hastelloy S-17%Cr Haynes 230-22%Cr M1-Haynes 230-1%Mn M2-Haynes 230+2%Mn
	3	Elemental metals Ag Fe, etc.
	4	Surface modified: (Mn,Co) ₃ O ₄ coated Crofer22 APU
Bat	elle	tool to the Reveal National Loberchiev U.S. Deservers of Des ₂ er

F	uəl Che	mistr	ry and	Carbo	on Ae	tivity	
	Temp. (°C)	H ₂	co	CH4	CO ₂	H ₂ O	
	800 (calc.)	72.1	12.4	0.2	2.5	12.8	
1	800 (exp.)*	74.2	9.8	0	6.2	9.7	
	10E-02 20E-01 20E-01 20E-01 20E-01 40E-01 20E-01 10E-01 00E-00		544y 	H ₀	- 1.00E+00 - 2.00E+00 - 2.00E+00 - 3.00E+00 - 4.00E+00 - 4.00		árdan.
Batelle			Tempeartur	e °C	ISIN'INCOMP	C.S. Department	alveratory of Energy 15

Summary and Conclusions

- Oxidation/corrosion behavior under dual exposures differs from that under single exposures.
- Fe-Cr base alloys appeared susceptible to iron oxide formation under H2||air dual exposures. This was not observed under reformate || air, possibly due to a lower hydrogen gradient.
- For Ni-Cr base alloys, dual exposures tend to improve scale adherence.
- No carbon induced corrosion or metal dusting was observed in the reformate (a_c<1) under experimental test conditions.

Bacilie Norrieven Notforal Jahnmary U.S. Department of Frengy 22

