Application of Transgenic Technology in Aquaculture: Pros and Cons

Thomas T. Chen

Department of Molecular & Cell Biology
University of Connecticut
Storrs, CT 06269

Current Constraints in Aquaculture

- Lacking sufficient pristine quality water
- Lacking complete control of reproductive cycle
- Lacking superior genetic traits of broodstocks
- In need methods of efficient detection and protection of diseases
- Lacking complete knowledge of nutrient requirement and appropriate feeds
- Insufficient understanding of development, physiology and environmental impacts
- In need of innovative management skills

Desirable Traits for Aquaculture

- Improving feed conversion efficiency and enhancing somatic growth
- Increasing disease resistant
- Creating value-add on products
- Increasing survival in extreme environment
- Improving control of reproductive cycle
- Producing high commercial value pharmaceutical products

BAEKON

Transgenic Technology

- Transgenic organisms: Organisms with foreign gene integrated in its genome
- Transgenic organisms have been produced for microorganisms, seaweeds, plants. invertebrates, lower vertebrates and lower mammals
- Transgenic organisms have been produced by microinjection, electroporation, infection with pantropic retroviral vectors, particle gum bombardment and lipofection

Strategies of Controlling Fish Diseases

- Vaccination with inactivated or subunit vaccines (effective but time consuming)
- Treatment with antibiotics or other antimicrobial chemicals (selection of antibiotics resistant pathogens and causing environmental contamination)
- Eradicating the infected population
- Breed disease-resistant strains (low efficiency of genetic selection)
- Development of specific pathogen free organisms (maybe effective but need more proof)

Antimicrobial Peptides

- Small linear peptide, helical, without cysteine residues, with or without a hinge residue (e.g., cecropins, magainins & melitin)
- Small linear peptide, without cysteine residue, with a high proportion of certain residues (e.g., apidaecins & dorsocin)
- Small peptide with one intramolecular disulfide bond (e.g., bactenecins & brevinins)
- Small peptide with two or more disulfide bonds, β -sheet structure (e.g., α -defensins & β -defensins)

Antimicrobial Peptides of Interest

Cecropin B -- KWKLF KKIEK VGQNI RDGII KAGPA VAVVG QATQI AK -NH₂

Pleurocidin – GWGSF FKKAA HVGKH VGKAA LTHYL -NH₂

Peptide CF17 -- a designed CecB analog with varied length and substituted amino acid residues.

Bactericidal Activities of Cecropin B, Pleurocidin and CF-17

Common Fish and Shrimp Viral Pathogens

Rhabdoviruses

infectious hematopoietic necrosis virus (*IHNV*), viral hemorrhagic septicemia virus (*VHSV*), & snakehead rhabdovirus (*SHRV*)

Birnavius

infectious pancreatic necrosis virus (*IPNV*)

Shrimp Viruses

White spot syndrom virus (WSSV) [DNA, envelop], Taura syndrome Virus (TSV) [capsid, single-stranded RNA) & Infectious hypodermal & hematopoietic virus (IHHNV) [capsid, single-stranded DNA)

Antiviral Activity of Cecropin B and CF-17 against Several Important Fish Viruses

Conclusion (I)

 While cecropin and pleurocidin have higher antibacterial activity, CF-17 has higher antiviral activity in vitro

Hypothesis

- Transgenic fish or crustacean carrying antimicrobial transgene should exhibit higher resistance to bacterial and viral infection
- To prove this hypothesis, cecropin transgene was introduced into medaka and the resulting tragenic
 F₂ progeny were subjected to challenge studies

Prototype of Cecropin Transgene

CMV **Promoter**

IgG-SP Pig cecropin Pro-cecropin Cecropin

(supplied by G. Warr at MUSC)

Cecropin analog, CF-17

Introducing transgenes into fertilized medaka eggs by electroporation

Summary of Cecropin Transgenic Medaka

Transgene Construct	# F ₂ Females	Transgene Expression
Preprocecropin B	2	Expression Detected
Procecropin B	10	Expression Detected
Cecropin B	2	Expression Detected
Porcine P ₁ Cecropin	3	Expression Detected

Challenge Against Pseudomonas fluoresens

Sperm-Mediated Gene Transfer

<u>Parameters</u>: Dilution buffer, Dilution factor, DNA/sperm, Voltage, Pulse #

Establishment of Transgenic Trout

Mortalities of Cecropin-Transgenic F2 Trout Challenged with *A. salmonicida*

Relative Percent Survival (RPS) of Cecropin-Transgenic F₂ Trout Challenged with *A. salmonicida*

F ₂ Line	Transgene	Genetic Background	Cumulative Mortality (%)	Average RPS*
WT (F2)	none	⊹ WT(F1) x ♀WT(F1)	52.0 ± 5.7	-
D8#909	cec P	♦ WT(F1) x ♀ F1(D8#909)	29.5 ± 4.9	43%
S8#Y419	cec P	↑ F1(S8#Y419) x ♀ WT(F1)	31.5 ± 9.2	39%
WT (TL)	none	♂WT(TL) x ♀WT(TL)	27.0 ± 14.1	-
S7#375	cec P	♦ F1(S7#375) x ♀ WT(TL)	13.5 ± 2.1	50%
S9#659	cec P	♦ F1(S9#659) x ♀WT(TL)	13.5 ± 0.7	50%
S9#747	cec P	∜ F1(S9#747) x ♀WT(TL)	19.0 ± 4.2	30%
S9#746	cec P	∜ F1(S9#746) x ♀WT(TL)	27.0 ± 12.7	N.P.
U7#949	cec B	↑ F1(U7#949) x ♀WT(TL)	31.5 ± 4.9	N.P.

^{*}RPS = [1 - %mortality of tested F_2 fish / %mortality of control fish] x 100

External Signs of Morbid Fish Infected with A. salmonicida

Frunculosis

External Signs of Morbid Fish Infected with IHNV-RB1

Mortalities of Rbt99 F₂ Challenged with IHNV

F2 Line	Transgene	Genetic Background	Weight (g)	Cumulative Mortality (%)		
1 x 10 ⁵ pfu/L						
WT (F2)	none		0.58	48.0 ± 5.7		
S8#Y419	cec P	↑ F1(S8#Y419) x ♀WT(F1)	0.61	30.0 ± 12.7		
S7#375	cec P	♦ F1(S7#375) x ♀ WT(TL)	0.41	22.5 ± 2.1		
S9#746	cec P	↑ F1(S9#746) x ♀ WT(TL)	0.51	4.0 ± 4.2		
5 x 10 ⁵ pfu/L						
WT (F2)	none	♦ WT(F1) x ♀ WT(F1)	0.58	54.5 ± 6.4		
S8#Y419	cec P	☆ F1(S8#Y419) x ♀WT(F1)	0.61	35.0 ± 11.3		
S7#375	cec P	♦ F1(S7#375) x ♀ WT(TL)	0.41	34.5 ± 2.1		
S9#746	cec P	☆ F1(S9#746) x ♀ WT(TL)	0.51	8.0 ± 1.4		

Pacific White Shrimp (Litopenaeus vannamei)

Collaboration with Dr. Shaun Moss of the Oceanic Institute, Hawaii

Methods of Introducing Transgenes into Pacific White Shrimp (*L. vannamei*)

 Pantropic viral vector mediated gene transfer

Lipid vesicle mediated gene transfer

 In situ electroporation mediated gene transfer

In Situ Electroporation Conditions

In situ Electorator (BTX); Voltage: 600-800 volts

DNA: 10 μ g/20 μ l; number of pulses: 2

Detection of CF-17 Transgene by PCR in F₁ Transgneic Shrimps

Percent of Transgenic Shrimp Produced by Different Methods

Method of Production	% Transgenic F ₁
In situ Electroporation	25
Pantropic Retroviral Vector	27
Lipofection	22

Application of Transgenic Technology in Aquaculture: Pros

- Simple method for targeted improvement of genetic traits
 - Enhanced growth, disease resistance, muscle mass, and nutrient utilization etc.
 - Value add-on characteristics: carotenoids, unsaturated fatty acids and pharmaceutical products
 - Control of reproductive cycle
 - Resistant to extreme environment: low oxygen requirement, low temperature etc.
- Efficient and time saving
- Specific and minimum side effects to animals been modified (i.e., single gene or a small number of genes been modified)

Application of Transgenic Technology in Aquaculture: Concerns

Impacts of genetic modifications on the health and welfare of the animals

Impacts of genetic modified animals on environment

Impacts of human health upon consumption of genetic modified animals

Impacts of Transgenic Animals on Human Health

- Unexpected effects from new proteins created by the transgene
 - Suitable for human consumption? Toxin?
 - Biological activity of new protein harmful to human?
 - Allergenic to humans
- Solutions: Stringent assessment of the product
 - > Toxicity determination
 - Assay for allergincity

Impacts of Transgenic Animals on Environment (I)

Genetic impacts

- > Transgene affects fitness: Mating success, juvenile viability etc.
 - **❖** Empirical observation showed that GH transgenics require higher O₂, display lower critical swimming speed, take higher risk exposure to predator and lower viability of young

Ecological impacts

- Resource competition with target and non-target species
- > Habitat impact
- > Interbreeding with wild populations
- Predation upon natural populations

Impacts of Transgenic Animals on Environment (II)

Solutions:

- ➤ Transgenic fish should be propagated in indoor close re-circulation facilities with high physical and biological containment
- Stringent environmental assessment of transgenic animals
- > Developing sterile strains for large scale grow out

Impact of Gene Transfer on Transgenic Animals

- Unexpected genetic effects caused by transgene insertion:
 - Mutation: disruption of endogenous genes
 - > Influence of the transgene promoter
 - > Both events will influence the fitness of the animals
- Unexpected effects from new proteins created by transgenes
 - > Toxic effect?
 - Adverse biological activity affecting development, metabolism, reproduction etc.
- Solutions:
 - > Targeting transgene insertion
 - > Selection

Acknowledgement

