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2-2MODIS # s % 4#
1. FHEKES

'] - - Aut aﬁ
Acquisition Captu;;";:m;m,

System

RunS Mosched?
chce per day

Reads mstogehed e
i updaias echadiiet
pooor digly

" Crecks regulerly 10r UpGOmIng
pass on scheduls and sterte
capturewihen Lpcoming pass is foued

carvier fock is DK
9 Lor Qlock is 0K

AREL,
Sets dowrennverter
trequency

Seis recaner trecLeEncy,;
chiecks receiver ook status
nonitors trackrgy.

tiolifies reedex that carier lock
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readex knves to ster! wWritex

Starts montar
Starts writsx
Feads bt stream fram PCI
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o shated memory.
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Automatic Data
Handling

Legend

OTcm‘Scun dasm

TereSean furcticn
TersScan script
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(Clder X-4omdd
Systems rmay have
pase_sondsript
wpecilied as post
proc n s.toschedue
record)

Processing System

10




2.EMBRRELASK

Acquisition capunies
System

Checks patt for
Inceming Tles, puts
them onthe peas disi,
and runs & post proc

Processing
System

Makes
7] applicstion
wockets

ingests with madisin,
Ut comeets
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3 TermScan furcticn
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1. ARG

TeraScan £z

Launchpad
TeraVisio
TeraPG
Trackeye
TeraCapco
Log Vie

BRBEEEHTEEHE
HEBGREEE
ELAHRFEESAA
BMEEHBEUEEES
HEHRETES A
AmMEE MM
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2. HBEHTHEHE
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5 4a

3. HEBBRES

“1# ksnapshot

gnapeshot : Conmand not found.
[xtuserfepa-p “1¢ ksnapshot

it
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3-1. HEBGRESS
E & 4%3‘%31(Tera Tera WholePass, Aqua, Aqua WholePass)

E}
%

Guteilite

I

Limit winde



3-2. AR GRESE

w2 12% 8 (Level 1B Modis, Cloud Top, Cloud Mask, Modis
Brightness Temp, Fire Image, Fire Point, Atmosphere Profiler,
Aerosols, Sea Surface Temperature)
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3-3. WEHBRAEME
2R 25 B(PASS) BB - i 2 HRE

wtel Tite Pilen Variabtes Ropor esentat jun
Love: |

Flomd |
e o

Modic Brightno.,

vk chati,

RN

Pive fane

fipe Paints
Aliingdae

P

IR DATC S P L eheil Torenne

Lol P

Fiow

Outaset Listing Options
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A EmaBmRFEERE

depa-p “1f ksnapshot.
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6. 2%NEEHER
—1. Tercan ?f:ﬂé

P —aReE 2 ST
B NOTICE Running get_modis_gsk:_anc 2003_1119_123919 get_modia_gskc_anc_16117.him!

i 3 Starting diskhogs2 b 2003_1119_130000 diskhogs_17_1 htmi

: Starting diskhoge2 o . 2003_1119_140000.diskhogs_17_t htmi
NOTICE Stanting pgs_waltd_raw 2008_11_19_14_06_d0.terra-1.info teradb  2003_1119_140411 pass_from_ftp_18178 tmi
NOTICE pass_fram_ftp completed 2009_1119_140411.run_from_fip htm!
Starting diskhoge2 B 2003_1119_150000 diskhogs_17_1 him!
NOTICE Starting pgs_waitd_raw 2008_11_19_15_41_19 terra-1.inko teradb  2003_1119_153907 pass_from_fip_21548.htm!
NOTICE pass_irom_ip completed 2003_1119_133907 run_from_itp htm!
Starting diskhogs2 1o 2008_1115_150000 diskhogs_17_1.tm!
NOTICE Starting pge_waid_raw 2003_11_19_16_45_00.aqua-1.info aquadb 2003_1119_184504 pass_from_ftp_24487 him!
Starting diskhogs2 o 2003_1119_170000.diskhogs_17_1 htmi
0031119 17:30:23 NOTE _from_| NOTICE pass_ram_ip completed 2003_1119_164504.run_trom_ttp.nimi
003/11/19 18:00:00 NOTE : Starting diskhogs2 1o 2003_1119_180000 diskhogs_17_1 .hml
NOTICE Stasting pge_waltd_raw 2003_11_19_18_23_30.aqua-1.infs aquadb 2008_1119_182028.pass_from_tip_27896 him{
NOTICE Running gel_web_slemenis 2003_1115_183000,get_web_elements_2B8080.tm!
00311119 18:30:07 NOTE : NOTICE Running get_elements 2003_1118_183007 gel_siemants_20093 ntml
003411119 18:30:24 NOTE : NOTICE Running get_imapp_ancillary 2003_1119_183024 get_imapp_ancillary_30290.html
0031119 18:30:48 NOTE NOTICE Running gel_gsic_twoline: 2003_1119_183046 get_gsk_twoline_30342 himi
001 119 18:33:58 NOTE NOTICE Running get_ssec_ancillary 2003_1119_188356.get_ssec_arcillary_31007 him!
00371 119 18:37:50NOTE NOTICE Running get_modis_gsk_anc 2003_1119_183730 get_modis_geic_anc_31332 html
003/1 1719 18:49:49 NOTE 1| : NOTICE pass_iam_tp completed 2003_1119_182028 run_from_ftp. htm!
3 Starting diskhogs2 o 2003_1119_190000 diskhogs_17_1 htmi
003711119 20:00:00 NOTE Starting diskhogs2 o 2003_1115_200000.diskhoge_17_1 htmi
00311119 21:00:00 NOTE Starting disknogs2 to 2003_1119_210000.diskhogs_37_1 html
00311 1719 22:00:00 NOTE : Starting diskhogs2 1o 2003_1119_220000 diskhogs_17_t ntml
0311119 23:00:00 NOTE Starting diskhogs2 o 2003_1119_230000 diskhogs_17_1.htm!
003711720 00:00:00 NOTE Starting diskhog2 o 2003_1120_000000 diskhogs_17_1.mtm!

2000/11/20 00:30:00 NOTE : NOTICE Runrning get_web_slements 2009_1120_003000 gel_web,_siements_8519 htmi
003411720 00:30:05 NOTE : NOTICE Running get_elements 2003_1126_00300% get_slements_9554 htm!(
003711120 00:30:13NOTE : NOTIGE Running get_imapp_ancillary 2003_1120_003013 get_imapp_ancillary_10731 him!

NOTICE Running gei_gvic_twoline 2003_1120_003330 gel_guic_twolire_10918 him! . -
| 2003_1120_003404 get_ssec_ancillary_1 1385.hm!
B . 2003_1120_004318 get_modis_gskc_anc_11950.html
Starting diskhoga2io L 2003_1120_010000 diskhogs_17_1 htm!
: Stasting diskhogs2 o ' g 2003_1120_020000.diskhogs_17_1 him!
pass_rom_itp: . NOTICE Staring pgu. §2003_)1:20 4 1ojer X ,pass_from_ftp_14448 htm|
i > gy

T

o

R

h-
,s;E
o
.
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6-2. TeraPGS a‘#ﬁ% % ..ft,aﬂ

2003/11/19 14:43:53INFO
12003711719 15:58:05 NOTE

2003711119 15:38:03 NOTE
003/1 1119 15:38:44 INFO

12003111119 17:26:10 NOTE
003711719 17:26:37 NOTE
00311719 17:26 40 INFO
003/11419 18:45:03NOTE
008/11119 18:45:03 NOTE
003/11/19 18:45:03NOTE

2003411719 18:45:04 NOTE

1200841 1/19 1g:43:04 NOTE

’g‘ 2005/11/19 18:45:26 NOTE

")' ksnupshot
"] : kmapshur.
"J* ksngf-\shnt

pgs_distrib:
pgs_pproc:
pgs_pproc:
pgs_pproc:
pgs_pproc:
Pgs_pproc:
pgs_pproc

pgs._distrib:

gs_pproc:
Pgs_pproc:

NOTICE Starting standard proc Aquq_rgb wnng_ie:l
NOTICE Starting standard proc EPA_OPD_Produce_image

NOTICE Starting standand proc FTP_TAIWAN_CHINA_AQUA_JPG

NOTICE Starting standard proc TAWAN_AQUA_1000KM_PRODUCT

NOTICE Starting standard proc TAWAN_AQUA,_250KM_PRODUCT

INFO TAIWAN_AQUA_250KM_PRODUCT it db complete

NOTICE Started teradb Amp/pgs_ingest 18198 datawhole_passheradt20031119.1353.11.atmas_profites. i kiataiwhole_passheradhv2o
NOTICE Starting standard proc FTP_TAIWAN_CHINA_TERRA_JPG .
NOTICE Starting standard proc TAIWAN_TERRA_1000KM_PRODUCT

INFO FTP_TAWAN_CHINA_TERRA_JPG_tii db complete

NOTICE Starting standard proc TAIWAN_TERRA_250KM_PRODUCT

NOTICE Stasting standard pro¢ Total_Qzone_FTP-Server

INFO Total_Ozone_FTP-Server_tdidb complete

NOTICE Started teradb nmp/pgs_ingest.21573 idatamhole_passeradbi20031119.1535.11 .atmos_profiles.idi idatawhole_passheradb/20
NOTICE Starting standand proc FTP_TAIWAN_CHINA_TERRA_JPG

NOTICE Starting standard proc TAWAN_TERRA_1000KM_PRODUCT

INFOFTP_TAIWAN_CHINA_TERRA_JPG_dt db complete

NOTICE Starting standard proc TAIWAN_TERRA_250KM_PRODUCT

NOTICE Starting standard proc Total_Ozone_FTP-Server

INFO TAIWAN_TERRA_250KM_PRODUCT_wit db complete

INFO Total_Ozone_FTP-Server_dl db complete

NOTICE Started aquadb mp/pgs_ingest 24495 /dataswhole_pass/aquaciti20031119.1634 a1.atmos_profiles idf idatarwhole_pasraquad.
NOTICE Starting standard proc Aqua_rgb_wang_test

NOTICE Starting standard proc EPA_OPD_Produce_Image

NOTICE Starting standard proc FTP_TAIWAN_CHINA_AQUA_JPQ

NOTICE Starting standard proc TAIWAN_AQUA_1000KM_PRODUCT

NOTICE Starting standard proc TAIWAN_AGUA_250KM_PRODUCT

INFO TAIWAN_ACUA_250KM_PRODUCT_idtdb complete

NOTICE Staned aquadb Amp/pgs_| 1115.1611.a1.atmos_profiles i ddatawhole_parsiaquad”
NOTICE Stanting standard proc Aqua_rgh_wang_test

NOTICE Starting standard proc EPA_OPD_Produce_image

NOTICE Starting standard proc FTP_TAIWAN_CHINA_AQUA_JPG

NQTICE Starting standard proc TAIWAN_AQUA_1000KM_PRODUCT

NOTICE Starting standard proc TAIWAN, A(IIA _2!!DKM PRODUCT

INFOTA!WAM AQUA, 50KM PRODL
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2-4 MODIS £ R ¥ E %k

MODIS % ¥ A % & %

# |mEEA K &

1 | WEHEAFEHETHAHEM | lastoes

2 | REHERBPEFEH Ispass

3 | MEBEREXRARSHE M4 EM | /data/ancillary/

4 | HEHEELELEFA /data/whole pass/

5 | mEHEERETNEE du and df

6 | MEHEHELSANE logviewer

7 | MEHEAEASHBAHALETEN | fip XXX XXXXXX.XXX

8 |MEMENELZABRBHE trakeye

9 |HRBEAEEH B GHET AR T | Archive list
%

10 | mEHEEMERMEE Teravision

11 | BEFERALSFIP ARBEE | fip xxx XXXXXX.XXX
AR

12 | e BaisE 45 £ 00 /datal/data T &A% 72 P

13 | MEFE TR EERR /data /home/xtuser

14 | R BHEHERRSHAKHBY R
R

15 | REBMEMEBEHEALHH

16 | MODIS # & & # £ #1EH

17 | Level 3 fEBEE & SBHATHE

%
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B=F LABAARZREZRERERATC
(NASA Goddard Space Flight Center)
REREXBREFRLE
3-1 Akt ik 4 % (Micro-pulse Lidar) f§ 1
Bk R FEMPL)E — BN FHERAMZESAELSL T
BEEFTHRAERATERWABBLEENI GE » T2 —EHRe
REZBRSZ kB - BIBFER  ZEEMRELEL
S A% 4 R 183 F Bk 56 & (10micro-joules ,0.2m exit-aperture width,
1.2E10°beam divergence) * Bk EH B EBREETH LT A4S - N
REFEHATHHEIMARN  BEPBUEAANBHFESHTER
B % Bk 5 R I AR B &Y IR R
 MREAERARBAGAABIMEEATRETHERE
-%ﬁm%¢MGﬁ$%%&’ﬁ@%%%%w%ﬁmﬁﬁt$#ﬁ“
B EBRETRAARE 5 10 A LR R LB BN — EHIKEL
EAGHRBERBITARTERBH RS > »E —BRKELES
EALaER 1999 £ 12 B BB @R -

EMAMREAELA LA D00 2RELBIFE © 8 # 1994
FRYRE A ELA S S SESI A HECEAT L HEE 30 2R
ERHESANEAL 252K EFA 0 EAHEEE LR
TEHMIRB A E L KBRS -

3-2 RAHT AR A BRERK
L & 0523 um
2. THtomE 10w
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B ® C ~10u]
EAAESAE © 2500Hz
Transceiver #L ¢ 0.2m

Beam Divergence * ~50 ¢ rad

TFHBHE © 30~300 AR

N Y W

Transceiver Field-of-View * ~100 x rad
AR

1. &4 AkH3a % © 2500Hz

R A SHE ¢ 60km

BHEHERX  REBBAEMEBCRTHRE
T 35853 ¢ 60sec

RAISA % ¢ 12MHz

B— % —ARMREHERA

AN PR
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3-3 Ak g B R 48 (Micro-pulse Lidar Network, MPLNET)

PR 632 B 048 (Micro-pulse Lidar Network, MPLNET) & % &
SHIMREAZTEE A4 REFRB AR ER R BB LEH
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Backscatter and Extinction Profiles
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Processing using TeraScan software and NASA EOS_HDF Toolkits

BOTH HDF and Earth-located TeraScan Data Format (TDF) end
products will be available for the listed products below.
Processing begins with a MODIS level-0 PDS file.

Product list

MODO01 (levella), MODO2 (calibration), MOD03 (Geolocation)

The MODIS Level 1 Processing Software for Direct Broadcast is a set of science
processing algorithms for producing geolocated, calibrated radiance from raw
Level 0 production data sets for the MODIS instrument. It includes: the Levella
algorithm, which reorganizes the raw data; the geolocation algorithm which
geolocates each MODIS field of view; and the calibrated radiance (aka

Level 1B) algorithm, which outputs calibrated radiance at 1 KM, 0.5 KM and 0.25
KM resolutions. This release is nearly identical to the algorithms run at the
Goddard Earth Sciences Distributed Active Archive Center.

MOD_PR35 (Cloud Mask), MOD _PRO7 (Atmos. Profiles),
MOD_PRVOLC (Volcanic Alert)

Cloud Mask (MOD_PR35), Atmospheric Products (MOD_PRO7), and Volcano
Alert (MOD_PRVOLC) algorithms. The Cloud Mask product is generally required by
all other level 2 products.

Level 2 Cloud Mask (MOD35) file in HDF format, which indicates the
presence/absence of cloud shadow effects, cirrus clouds, ice/snow, and sun-
glint contaminacion for each pixel. 2. Level 2 Atmosphere Profile (MODO07) file
in HDF format, containing atmospheric temperature and moisture profiles,
atmospheric stability, and total ozone burden (MOD07) 3. Volcano alert file
(ASCII)

MOD04 (Aerosol product) & MODO5 (Precipitable Water)

Level 2 Aerosol Product (MOD04) file in HDF format, which contains information
about atmospheric aerosols, including ambient aerosol optical thickness (over
oceans globally and a portion of the continents) and aerosol size distribution
(over ocean) or type (over land). 2. Level 2 Precipitable Water (MOD05) file in
HDF format, which contains water vapor columns as estimated using infrared (day
and night) and near-infrared (day only) algorithms.

MOD10 (Snow Cover product)

Level 2 Snow Cover Product (MOD10) file in HDF format. It contains results of
the snow mapping algorithm for each 500 m pixel. The results are stored as coded
integers corresponding to various classes: snow (200), snow-covered lake ice
(100), cloud obscured (50), ocean (39), inland water (37), non-detections (25),
and other.



MOD29 (Sea Ice Extent product)

Level 2 Sea Ice Extent Product (MOD29) file in HDF format. It contains results
of the sea ice mapping algorithm and ice surface temperature (IST) for each 500
m pixel. All files contain the results of the "Sea Ice by IST" test, which
classes pixels with temperatures:below 271.5 K as sea ice and pixels with
temperatures above 271.5 K as opén ocean. Files generated for swaths acquired
during daylight also contain the results of the "Sea Ice by Reflective
Characteristics" test, which classifies pixels as sea ice, cloud, open ocean,
inland water, or land.

MOD18 (Ocean Color product)

Level 2 Ocean Color files (MODOCL2, MODOCL2A, MODOCL2B) in HDF format. These
contain measurements of normalized water leaving radiances, aerosol optical
thickness, aerosol correction epsilon, diffuse attenuation; bio-optical
properties for Case 1 waters (including chlorophyll-a, chlorophylli-a +
pheopigment, total pigment, and total suspended matter concentrations);

Case 2 chlorophyll-a concentrations, Gelbstoff, phytoplankton and total
absorption coefficients; clear water epsilons; instantaneous photosynthetically
available radiation (IPAR) and radiation absorbed by phytoplankton;

chlorophyll fluorescence line height, baseline, and efficiency:

detached coccolith concentration, pigment concentration in coccolithophore
blooms, calcite concentration; phycoerythrin (PEB) and phycourobilin (PUB)
concentrations

MOD28 (Sea Surface Temperature product)

Level 2 Sea Surface Temperature (SST; MOD_PR28) algorithm.

MOD09 (Surface Reflectance product)

It runs the Level 2 Surface Reflectance (MOD_PR0S) algorithm. The Surface
Reflectance product is required by several higher level land processes:

Vegetation Indices (VIs),

Bi-directional Reflectance Distribution Function (BRDF),

thermal anomaly,

snow/ice, and

Fraction of Photosynthetically Active Radiation/ Leaf Area Index
(FPAR/LAI) .

The output of this PGE is as follows:1l. Level 2 Surface Reflectance (MOD09)
file in HDF format, which contains estimates of the true land surface
reflectances in 7 bands, corrected for atmospheric scattering and absorption.

2. Coarse resolution Surface Reflectance (MODO9CRS) file in HDF format,
containing above information at 5 km resolution.



Aerosol_product

Contents from TDF

variable Type units
Longitude float Degrees_east
Lat1tude float Degrees_north
Scan_Start_Time double Seconds since 1993-1-1 00:00:00.
solar_zenith short Degrees
solar_Azimuth short Degrees
Sensor_zZenith short Degrees
sensor_Azimuth short Degrees
Cloud_Mask_QA  byte None
Scattering_Angle short Degrees
Optical_bDepth_Land_And_Ocean short None
optical_Depth_Ratio_small_tand_ short None
Reflected_Flux_tand_And_Ocean short None
Mean_Reflectance_rLand_Al11l short None
Standard_bpeviation_Reflectance_ short None
Path_Radiance_Land short None
Error_Path_Radiance_Land short None
critical_Reflectance_Land short - None
Error_Critical_Reflectance_tLand short None
Qualityweight_Ppath_Radiance_Lan short None
Qua1it¥Weight_Crit1ca]_Ref1ecta short None
Aerosol_Type_Land short None
continental_oOptical_bDepth_Land short None
Corrected_oOptical_pepth_Land short None
Estimated_uncertainty_Land short > None
Mass_Concentration_Land float 1.0e-6g/cmA2
Angstrom_gxponent_Land short None
Reflected_Flux_tand short None
Transmitted_Flux_Land short None
Cloud_Fraction_Land short None
optical_Depth_Ratio_small_rand short None
Number_Pixels_Percentile_Land short None
Mean_Reflectance_Land short None
STD_Reflectance_tand short None
Quality_Assurance_Land byte None
Quality_Assurance_crit_Ref_Land byte None
solution_Index_Ocean_small short None
Solution_Index_Ocean_Large short None Effective_Optical_Depth_Best_Oc
short None
effective_optical_Depth_Average short None
Optical_Depth_Small_Best_Ocean short None
Optical_Depth_small_Average_Oce short None
Optical_Depth_Large_Best_Ocean short None
optical_Depth_Large_Average_Oce short None
Mass_Concentration_Ocean %1oat 1.0e-6g/cmA2
Effective_Radius_Ocean short micron
Cloud_condensation_Nuclei_oOcean float CCN/cmA2
Asymmetry_Factor_Best_Ocean short None
Asymmetry_Factor_Average_Ocean short " None
Backscattering_Ratio_Best_0Ocean short None
Backscattering_Ratio_Average_Oc short None
Angstrom_Exponent_1_Ocean short None
Angstrom_Exponent_2_Ocean short None
Reflected_Flux_Best_Ocean short None
Reflected_Flux_Average_Ocean short None
Transmitted_Flux_Best_Ocean short None
Transmitted_Flux_Average_oOcean short None
Least_Squares_Error_Ocean short None
optical_bDepth_Ratio_Small_Ocean short None
Optical_Depth_by_models_ocean short None

pPage 1



Cloud_Fraction_oOcean short
Number_Pixels_uUsed_Ocean short
Mean_Reflectance_Ocean short
STD_Reflectance_Ocean short
Quality_Assurance_Ocean byte

Aerosol_product
None
None
None
None
None

pPage 2
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TeraScan™ Systems

SeaSpace

Reliable
i Proven
| Solutions

Lowest
Cost of ,‘
Ownership

PROVEN LEADERSHIP
AND EXPERIENCE

Over the past 20 years, SeaSpace
Corporation has designed, built,
installed and supported over 220
groundstations worldwide. SeaSpace is
proud of its successful track record for
on-time delivery of systems, meeting
needs for research, military and civilian
organizations. TeraScan® products,
both hardware and software, are built
to meet the mission critical require-
ments of our operational and research
customers, utilizing best engineering
principles and by leveraging irnova-
tions in collaboration with other

industry leaders. - RGB compsits of Terra MODIS data showing a dust storm from Ching aver
Koreq, reaching Japan. Courtesy of: Korea Metecrological Administration.

G " : -

SeaSpace provides advanced products and services

X- BAND L/S-BAND OTHER

Terra & Aqua SeaWiFS, AVHRR, TeraScan® Software

IRS-P4 (Oceansat) FY-1C (HRPT) Annual Users

£RS-2 DMSP Conference

RADARSAT GOES, GMS, Meteosat Quality Customer

The most installations Over 220 land-based, SUP port

worldwide portable and shipboard Custom Engineering
systems installed and development

Timely upgrades to next generation satellites
Active User Community

ERS-2 SAR (synthafic aperturs rader) image of - :
Salton Sea in the desart region of southem
Caifornig. Note the pattem of slicks indicating
drculation in this shallow, highly safine body of
water. The ERS-2 data was acquired by @
SeaSpaca SX-EOS system at the University of
Wisconsin - Madison when the spatecroft was just

a fow degraes above the horizon. Courfesy of :
SeaSpace Corporation. '




All SeaSpace systems mclude the industry standard  NISENIeElCRE

TeraScan® software:

QOver 400 licenses worldwide

Customizable, end-to-end
solution

Automatic product generation
and delivery

Built and supported by

SeaSpace based on our
customers’ requirements

Seamless interfaces to other
applications

Export to HDF, NetCDF,
GeoTIFF

Developer’s Toolkit Included

Highest quality

antennas and components

Every system completely built and tested at SeaSpace prior to shipping
Full support throughout life cycle of each system
Longest service life and easiest to maintain

Fastest and most thorough installation and commissioning in the industry

a complete
solutions
provider.

We build
more than
groundstations;
we build
long-term
partnerships!

RGB composite of Term MODIS dato over Westem Australio. Courtesy of
Wastem Australion Sctafite Technology ond Appfications consorfivm.

Image of northem
Californig fires on 29
August, 2001 from
Indi's Ocsansat-1 OCH,
acquired and processed ot
SeaSpace Corporation,
San Diego, CA

Courtesy of: SeaSpaca
Corporation.
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The Atmospheric Infrared Sounder,with its companion Advanced

Microwave Sounding Unit and Humidity Sounder for Brazil
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The Atmospheric
Infrared Sounder
(AIRS), together with
the Advanced
Microwave Sounding
Unit (AMSU) and the
Humidity Sounder
for Brazil (HSB) on

the Aqua mission,

represents the most
advanced sounding system ever deployed in space. The system is capable of measuring

the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over
1 km-thick layers under both clear and cloudy conditions, while the accuracy of the
derived moisture profiles will exceed that obtained by radiosondes. Furthermore, the

_ system will provide additional data on land and ocean surface temperature and surface

"gloud fraction (see centerfold example from an earlier instrument) and cloud
ht,;and ozone burden of the atmosphere. This makes AIRS/ AMSU/HSB the
primary observing system to study the global water and energy cycles, climate varia-

tion and trends, and the response of the climate system to increased greenhouse gases.

Weather or Climate?

When we talk about the weather, we are talking about conditions at one specific place and
time. If someone says “Yesterday we had an inch of rain in Los Angeles, but today is clear
and dry,” he is talking about weather. The weather is constantly changing.

When we talk about climate, we are describing the long-term average of weather. If someone
says “Los Angeles usually gets two inches of rain in the month of November,” he is talking
about climate. You have to make measurements for many years to get an idea of what the . )
true climate is. -

J ol
The difference between weather and climate is fike the difference between a sports team win- e T
ning one game and having a winning year. Some games you win, some games you lose. E

(which is like the weather changing day-to-day), but if at the end of the year you've won a lot L e -
more than you've lost, you'd say you've had a winning year (or a winning climate)! ’ S

e B




Measuring the Atmosphere with Radiosondes

Currently, weather balloons are the most important source of information
about Earth’s atmosphere. They are usually called ‘radiosondes,’ sonde
meaning ‘sounding’ in French, a reference to the ancient maritime practice
of measuring the deep ocean from ships. ‘Radio’ refers to their method of
data return. Hundreds of balloons are launched around the globe twice
daily to sample the atmosphere to heights of about 15 km (10 mi). Each
balloon, about the diameter of a child’s wading pool, lifts temperature,
humidity and pressure sensors in a milk carton-sized box. The sensors
transmit information to a receiver on the ground, where it is processed and
distributed to weather forecasting centers. The result is a snapshot of the
atmosphere every twelve hours at a limited number of sites around the
world.

This picture is not complete. Mast radiosondes are faunched over land, so
that the 75% of the world covered by ocean is not sampled. Furthermore,
economic differences between countries further influence coverage. Europe and North

America have excellent coverage, while much of Africa, Asia and South America are sparsely
sampled.




o almost irrepla

: abie industrial process

~ domestic applications. I

reasons, fresh-water is ar‘immens

ly valuablé resource on which our’ _
existence depends. Evaporation, pre-
cipitation, and the long-range transport
of water vapor by winds are the processes
that constantly recycle water and renew fresh
water resources - a feature unique to our planet, at
least as far as we know. As civilization has evolved, we have been making ever-increas-

ing demands on water resources and by now, any substantial change in the global water

cycle would entail serious consequences in many regions of the world where water

resources are already strained.

The amount of water vapor carried by the atmosphere increases dramatically with tem-

perature, because warm air has a much larger water holding capacity than cold air. As

‘él climate becomes warmer, models predict an acceleration of the global water

entails faster depletion of ground water resources, although more abundant rainfall
means more frequent and generally larger flooding events. The report from the

; .Chan

“Shates that
“Warmer tempera-
tures will lead to a
more vigorous
hydrolbgical cycle;

' this translates into
prospects for more
severe droughts

. and/or floods in
some places ..

Several models




f hydrology in the chmate

system.

One general indicator of the strength of the global water cycle is the mean residence
time of water in the atmosphere. The equivalent of the entire water content of the
atmosphere is recycled 33 times each year. (This is obtained by dividing the average
global yearly precipitation of 95 cm/ year by the total atmospheric content of precip-
itable water vapor of 2.9 cm). This gives water 4 mean global residence time in the
atmosphere of about 11 days (Chahine, Nature 1992). Variations in the residence time, or
its equivalent the recycling rate, can be obtained from space observations W1th

1 accu-

racy that permits determination of how it is changing on a monthly basis.




Water Vapor: Earth’s Primary
Greenhouse Gas

Water vapor is the dominant greenhouse gas in the Earth’s atmosphere. It accounts for
about 60% of the greenhouse effect of the global atmosphere, and most of its sensitivity
to temperature, far exceeding the total combined effects of carbon dioxide, methane,

ozone and other greenhouse gases.

From time immemorial, humans have been engaged in activities that alter the environ-
ment, first by clearing forests and using the land for their own purposes, and now by
burning fossil fuels at a rate that results in a major increase in the amount of carbon
dioxide and other absorbing greenhouse gases present in the atmosphere. As a result,
th& v!;mo“svp]_;\eric concentration of carbon dioxide has already reached a level 30% higher

than at eny time during the past 300,000 years, despite drastic changes in the Earth’s cli-
mate and successive ice ages. Methane concentration has more than doubled, while
unknown amounts of aerosol" haze have been mtroduced in the atmosphere In these

in the Earth’s atmosphere, land and oceans.

Water vapor in the atmosphere strongly absorbs infrared radiation emitted by the

Earth’s surface and therefore acts as a blanket that insulates us from the cold radiation
sink of deep space. This atmospheric blanket is thickest in the tropics, where nighttime
air temperatufe remains close to daytime values. It is thin over deserts, high mountains, -
and plateaus, where, partly as a consequence, temperatures drop precipitously at night.
Because of the presence of variable amounts of water vapor in the air above us, the sur-
face warming associated with an increase of energy absorbed by the planet is twice as
much as it would be with a totally dry atmosphere. This i isa major effect and also a

source of considerable uncertainty about future climate change.. woe B .



Water is brought to this
¢

phere. However, we are not sure

to the contrary, dry the air. Accurate measure- .
es will resolve this uncertainty. R

The Greenhouse Effect

The Earth without its atmosphere would
be, on average, a much colder place.
Warming to the familiar temperatures of
sun-heated surfaces during the day, our
planet would cool to far below freezing at
night. The atmosphere retains much of
the daytime heat by absorbing infrared
radiation (this is the familiar warmth felt a
few feet from a west-facing wall on a
summer evening). A similar phenomenon occurs when sun shines through a window into a
closed room, hence the term “greenhouse effect.”

All gases absorb infrared radiation, but some are particularly effective. Water vapor is the
most important greenhouse gas, mostly because it is so abundant, Next in importance are
carbon dioxide and methane. Water vapor varies naturally, but human activities have produced
significant amounts of additional atmospheric carbon dioxide and methane, particularly since
the start of the industrial revolution in the late eighteenth century. (Current United States per
capita production of carbon dioxide is about six tons per year.) As early as a century ago sci-
entists speculated that increasing carbon dioxide from burning coal and oil might warm the
Earth. And as Earth warms, evaporation increases, sending more water vapor into our atmos-
phere.

Qur planet has experienced a rapid temperature increase since the 1970s, and six of the ten
warmest years of the past century were in the 1990s. Significant changes in climate have
accompanied this warming. Are these changes caused by increasing greenhouse gases,
notably carbon dioxide? While many climate researchers believe so, the causes of climate
change are not well understood. A goal of the AIRS/AMSU/HSB science team is long-term,
stable observation of the atmosphere for monitoring global warming and other types of cli-
mate change.




Are Current Weather
Anomalies Connected to

Climate Change?

Change in global-mean temperature would not draw much attention if we did not fore-
‘ hatgfelaﬁvely small variations in the global environment can entail changes of much
ter*s§g’\rrtificance in regional weather, water resources and agricultural productivity.
The striking manifestations of “El Nifio weather” are but one example of such climate-

weather connections.
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storm tracks and intensity. We already know distribution of‘trop-"

ical cyclones, hurricanes or typhoons, between the Atlantic and Pacific oceans changes

from year to year, governed in part by El Nifio events or their counterparts, but they are

also sensitive to other, longer term changes in global winds, the water content of the

lower atmosphere, the temperature of the ocean and probably more. Likewise, the

intenéity and path of mid-latitude storms respond to planetary-scale patterns or “oscil-
-lations” of the global atmosphere, of yet unknown origin, We surmise that these phe-

nomena hold the key to effective predictions of the anticipated regional effects of cli- ‘
_ mate variations. We want to know the extent to which vax;igtigns.m local weather, pre-

cipitation and water resources are related to global climafé change. « P e
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understand and predict climate change, it is not sufficient to consider atmésp eric,

oceanic or land processes in isolation from the atmospheric circulation that controls the

fluxes of radiant energy, heat, and water among the atmosphere, ocean and.land surface.

and the details of mchwdual storms or dry spells. Satellite observation is the ideal tool

for this purpose; only space-based sensors can provide at the same time detailed infor-

mation on current weather events and a global view of the atmosphere.. The most direct—»

ly applicable information is delivered by atmospheric sounders like AIRS / AMSU/ HSB e
_which can resolve the verhcal structure of weather. systems s
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ity to conduct appropnate weather reconnaissance -
over the ocean was a decisive advantage. The timely
exchange of terse meteorological messages was the essence
of a successful “synoptic” (instantaneous) analysis of the weather
situation over the region. Thirty years ago, meteorologists had their first opportunity to
use global observations collected for the scientific purpose of demonstrating the feasibil-
ity of one-to-two-week weather prediction L;sing computer models of the atmosphere.
We are now finally on the verge of achieving this objective, thanks to successive break-
throughs in global weather observation from the Earth’s surface and from space, a

sweeping acceleration in worldwide communications, and the ever increasing computer

capabilities.

Satellite-based sensors can only detect radiation emerging from the
Earth’s atmosphere, not measure directly the meteorological
properties of interest. The interpretation of satellite
measurements requires a complicated mathematical
.prbéeduxe that consists of recreating as best we can

the radiation sxgnafure oithe partxally absorbmg,

tion measurements and incapable of matching
the accuracy of measurements made directly in
the atmosphere. For this reason, satellite obser-
vations added to the available information only
where local measurements were scarce, such as
most of the southern hemisphere and large oceanic ‘
"/ regions in the northern hemisphere. These technical limita-

T tions have been overcome. We expect that satellite sounding

‘ data wﬂl fmally match the accuracy of balloon-borne sensors and deliver the same preci-

sion worldwide as was possible so far only over the developed regions of the northern |

hemisphere, with corresponding improvement in the quality and range ‘of extended-
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weather forecasts.




Daytime Atmospheric Surface Temperature
TOVS data, July 1999

Predicting the
Weather

The simplicity of tomorrow's
weather forecast masks a
remarkably complex and difficuit
activity. The forecast process
begins with the timely gathering
of atmospheric observations. These data Sets are very large, but also surprisingly incomplete:
current satellites take limited numbers of observations, and radiosondes are confined to the conti-
nents twice daily. Large areas of our planet, especially over the oceans, are poorly observed.
{Oceans may seem inconsequential to those of us living on land, but many weather disasters have
featured poorly forecast oceanic storms moving ashore.)
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Observations are combined mathematically with computer models of the atmosphere. These mod-
els embody the equations describing the physical properties of the atmosphere. Despite their
sophistication, they only partially describe the atmosphere’s true behavior. For example, even a
high resolution global model has gridpoints spaced every 100 km, so a single profile represents a
volume of roughly 200,000 cubic km. The best possible observations entered into the most
sophisticated forecast models sometimes yield questionable predictions.

This leads to the final step in the forecast process. Weather forecasters analyze weather observa-
tions and predictions from computer models. Forecasters use judgment and experience to sort
through complex and sometimes contradictory information. The result is tomorrow’s forecast.

: Lo A major goal of the AIRS/AMSU/HSB science team is improving weather forecasts. This will be
B achieved through more complete observations, especially over the oceans.
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Science Objectives

Understanding the dynamics of climate, the trans-
port of chemical agents in the atmosphere and their
distribution over the surface of the Earth, and the
rainfall and evaporation that control the growth of
vegetation requires a precise knowledge of the global
atmospheric circulation, temperature profiles, and

water vapor content.

AIRS/AMSU/HSB will observe and characterize the
entire atmospheric column from the surface to the
top of the atmosphere in terms of surface emissivity and temperature, atmospheric tem-
perature and humidity profiles, cloud amount and height, and the spectral outgoing

infrared radiation. These data and scientific investigations will answer long-standing
questions about the exchange and transformation of energy and radiation in the atmos-

phere and at the Earth’s surface.

tudy if the global hydrologic cycle and its coupling to the energy cycle is a key to
understanding the major driving forces of the Earth’s climate system.
AIRS/ AMSU/ HSB will measure the ma]or components of these dnvmg forces

AIRS will provide several spectrally transparent window channels that will observe

the surface with minimal contamination by the atmosphere and will allow the
determination of accurate surface temperature and infrared spectral emissivity. In
addition, the narrow spectral channels in the short-wavelength infrared region will
observe the atmospheric layers near the Earth’s surface with the highest vertical res-
olution possible by passive remote sensing. The observations will enable investiga- '
_tions of the fluxes of energy and water vapor between the atmosphere and the sur- R

_ face, along with their effect on chmate T e
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This cut-away view of the AIRS

instrument shows the key

mechanical structures and

assemblies. The spectrometer is
small compared to the volume

- required to support space radiators
and electronics in a configuration
consistent with the spacecraft

interface constraints.

Improving numerical weather prediction: Numerical weather prediction models
have now progressed to the point where they can predict atmospheric temperature
profiles to an accuracy of 2 K, which is equivalent to the accuracy of current satellite

data. Further improvement in our knowledge of temperature profiles is essential in
order to improve forecasting accuracy. AIRS/ AMSU/HSB temperature profiles With
radiosonde accuracy of 1 K in 1 km-thick layers are key to improving the accuracy ..

and extending the range of weather forecasts.

4. . Detection of the effects of increased greenhouse gases: AIRS will ma
tration of carbon dioxide and methane gl w‘{gll

. 5. Assessing climate variations and feedbacks- The accuracy and hlgh spectral reso-
S lution of AIRS prov1de a powerful new tool for chmate stuches AIRS hxgh 'esolu—
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Atmospheric Sounding

Atmospheric sounding for information about temperature and abundance of gases is based on
the fact that thermal radiation received by a radiometer originates at wavelength-dependent
depths in the atmosphere. This is caused by a non-uniform absorption spectrum, particularly by
molecular absorption lines. (Note that in an atmosphere in thermal and radiative equilibrium,
emission equals absorption. If that were not the case, the atmosphere would either cool down or
heat up until balance is reached.) At wavelengths near the peak of such a line, absorption may be
so strong that most of the underlying atmosphere is opaque, and only the top of the atmosphere
is “seen” Conversely, at wavelengths away from the lines, often called a “window” region, the
atmosphere may be nearly transparent, and the surface or the bottom of the atmosphere is seen.
Through spectral sampling, i.e., by measuring narrow spectral bands or “channels;” it is then pos-
sible to probe into different depths of the atmosphere’

It is possible to separate the effects of different atmospheric gases by using channels in different
spectral regions where one gas has absorption features while the others do not. To measure tem-
perature profiles, AIRS uses a large number of CO, absorption lines in the infrared spectral
region, while AMSU-A uses a few 0, absorption lines at microwave wavelengths. To measure
water vapor profiles, AIRS uses many H,0 absorption lines throughout its speciral range, and
HSB uses a single H,0 absorption line in the microwave region. Since the vertical distribution of
(0, and 0, are both stable and well known, the CO, and O, channels allow the temperature dis-
tribution to be determined. With that known, the H,0 channels allow the vertical distribution of
water vapor density to be determined.

The infrared spectral range covered by AIRS also features absorption lines of other molecular
species, such as O3 and CH,. This makes it possible to deduce ozone and methane profiles.
Finally, while liquid water makes most clouds completely opaque in the infrared region, in the
microwave region they are partially transparent. The microwave spectral absorption features of
liquid water therefore make it possible to determine the vertical distribution of liquid water in
clouds from AMSU-A and HSB measurements. This information is used to make the derived AIRS
temperature and water vapor profiles more accurate.




The Instruments

terization.

AMSU-A is actually two completely separate sensor units, AMSU-Al and AMSU-AZ,
but during data processing on the ground the observations from the two instruments

are combined and treated as if they came from a single instrument. (This is possible
because the two units are very similar and are operated in a synchronized way.)
Together they provide measurements in 15 spectral channels. Most of them are used to
derive temperature profiles, from the surface upward to about 40 km. Some are used to
provide cloud information. The AMSU-A “footprint” is three times as wide as the AIRS
footprint, and an AMSU-A spot therefore covers a cluster of nine AIRS spots. Data from
a single AMSU-A spot are used to “cloud clear” a cluster of nine AIRS observations.

HSB provides measurements in four spectral channels, which are used to derive water

vapor profiles, from the surface to about 10 km, and some supplemental cloud informa-
i ey are also used, together with AMSU-A data, to derive liquid water (i.e,, cloud)
g8ty 'elp make the AIRS-derived profiles more accurate. Rain intensity can also be

educed from the HSB measurements.

The instruments are all cross-track scanners. They view their respectlve scan mxrrors,

"~ Tittle more than 800 km on either side of the groun ,
a complete revolution in 8 seconds. The AIRS reflector and HSB reflector each make

three revolutions in the same time (i.e., each makes one revolution in 2.67 seconds).
About 99° of each 360° revolution is used to sample the atmosphere and surface below.
- This takes about 6 seconds for AMSU-A and 2 seconds for AIRS and HSB. AMSU-A .
' takes 30 Earth-vie‘w samples in the 6-second period, and AIRS and HSB each take 90 - ' o

Earth-v1ew samples in the. 2~second period. The samphng density of AIRSand HSBis -~ = - "~
" thetefore tnple that of the AMSU-A instruments; both along and across the swath.". . . LA
.Hence for each AMSU A sample (or spot) there are nine HSB and nine AIRS spots —

- Wi e

The remamder of the rotation cycle is spent lookmg at empty space or internal cahbra»«»-: -
tion targets. Calibrating every scan cycle results in a very stable measurement‘ System.
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“IR: 1.1%(=13.5 km @ nadir).
~Vis/NIR: 0.2°.(= 2.3 km @ nadir)
v -99° (= 1650 km)
Scan Sampling: *~IR: 90 x 1.1°
Pointing Accuracy: IR: 0.1°
Thermal Control:- ' IR detectors: active cooler @ 60 K
Passive radiator @ 150 K
Electronics @ ambient
Prime Contractor:  British Aerospace Systems
(formerly Lockheed-Martin)
Responsible Organization:  Jet Propulsion Laboratory

FACTS ABOUT AMSU ’

Instrument: AMSU-Al AMSU-A2
Size: . 72x34x59cm 73x 61 x86.cm

Channels: 13
Aperture: 15 cm (two)
Instrument Field of View:  3.3°.(=

100° (= 1690 km)




Data Products to be Derived from the ATRS/AMSU/HSB Data
by the AIRS Science Team [T

Each of these products is described in the EOS Data Products Handbook, volume 2, published in 2000
and available from the EOS Project Science Office web site at http://eospso.gsfc.nasa.gov.

Level 2 Cloud-Cleared Radiances

Flux Product Clear-column radiance

Outgoing longwave radiation at the top of the atmosphere
Outgoing shortwave radiation at the top of the atmosphere
Net longwave flux at the surface

Net shortwave flux at the surface

Atmospheric Temperature Product Temperature profile through the atmosphere (30 levels)
Troposphere height
Stratosphere height

.. Humidity Product Water vapor profile through the atmosphere
e Total precipitable water

Cloud liquid-water content

Precipitation indication

Cloud-ice indication

Cloud. Product Clou&f-t&y fpr‘as sure

Total ozone

Trace Constituent Product Methane
Carbon monoxide

Surface Analysis Product Sea surface skin temperature
B Land surface skin temperature .
Infrared surface emissivity e b )
Microwave surface emissivity
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