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GMM-Based Speaker Verification System
1 Bin Liao

Email : snet@cht.com.tw , iaoib@comp.nus.edu.sg

Abstract

This report summarizes the GMM-based speaker verification
baseline system. Firstly, we normalize acoustic vectors at the
filter-bank level such that the test data distribution matches the
training data distribution. And then, the system is built around the
likelihood ratio test for verification, using GMMs for likelihood
functions, a universal background model (UBM) for alternative
speaker representation, and a form of Bayesian adaptation to derive
speaker models from UBM. Experiments with this baseline system
on the development data of the NIST 2001 speaker recognition

evaluation corpus are reported.
Introduction

Background noise or distortions caused by the transmission usually
lead to mismatch between the test conditions and the training data.
The mismatch can severely deteriorate the system performance. To
improve the performance, the mismatch should be reduced between
training and testing. Cepstral mead subtraction (CMS) and RASTA
are two of the standard feature-based approaches. But channel and
handset mismatch can still cause lots of errors after CMS or RASTA.
Recently, a new approach is feature warping which transform the
distribution of filter-bank coefficients such that the test data
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distribution matches the training data distribution. This technique
brought significant improvements for speaker verification compared
to standard techniques.

In recent years, GMM-based systems have been applied to the
annual NIST Speaker Recognition Evaluation (SRE). These systems,
fielded by different sites, have consistently produced state-of-the-art
performance. In particular, a GMM-based system developed by MIT
Lincoln Laboratory [1], employ Bayesian adaptation of speaker
models from a universal background model and handset-based score
normalization, has been the basis of the top performance in the NIST
SREs since 1996.

The aim of the baseline system is to setup evaluation environment
and compare to the system which gets the result on NIST 2001
speaker recognition evaluation corpus. In this report, we describe in
Section 2 the framework of the baseline system. In Section 3, we

report on some experiments and some comparisons.
The Framework of baseline system

Platform Architecture

The baseline is composed of the following main modules: speech
feature extraction, modeling, score normalization, and decision.
Feature warping is applied during MFCC feature extraction. The
modeling module is based on Gaussian mixture models (GMMs)
with maximun a posteriori (MAP) adaptation of speaker independent

model. Score normalization, is also applied. The decision module
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makes the decision by comparing a normalized likelihood ratio to a
threshold and plots the DET curves [4].
Feature Warping

The warping can be viewed as a nonlinear transform.
YA t] =T, (Y,[t] )

Y,[t] denote output of the kth Mel scaled filter after
applying a 10™ root compression at time frame t. The transform
T, use here is a power function.

Before actually applying the power function
transformation the filter output values v, are scaled to the interval
[0,1] by dividing them through the maximal value Oy », - Then the

transformation is applied and the resulting values are scaled back to

the original range. The symbols used in the following equations are :

N, the number of quantiles. Q™" the I th quantile on the training

data, these are estimated globally not dependent on the filter channel
k. o, the Ith quantile estimated on the test utterance for filter
channel k.

LD = Oy, (0 G2y 11—y 2y )

Qk,NQ k.Ng
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The transformation parameters o, and vy, are chosen to

minimize the squared distance between the current quantiles ¢, ,

train

and the training quantiles Q;":
Nyl
biso = argmin(Q (5,Q,) - 07"")) 3)

It 1s useful to apply the normalization both in training and
test. That is, the overall distribution of all training data is used as
reference (target histogram), and the data of each test and training
speaker is transformed to match the target histogram.
Adaptation of Speaker Model

The UBM 1is a large GMM trained to represent the
speaker-independent distribution of features. In our system, we
derive the hypothesized speaker model by adapting the parameters
of the UBM using the speaker’s training speech and a form of
Bayesian adaptation (Fig. 1). In previous result [1], the best overall
performance is from adapting only the mean vectors. In our system,

we also adapt mean only.
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Speaker Training Data

(a) (b)

Fig. 1 Pictorial example of two steps in adapting a hypothesized speaker
model. (a) The training vectors (x’s) are probabilistically mapped into the UBM
mixtures. (b) The adapted mixture parameters are derived using the statistics
of the new data and the UBM mixture parameters. The adaptation is data
dependent, so UBM mixture parameters are adapted by different amounts.

Score Normalization

The log-likelihood ratio for a test sequence of feature vector X

1S Compute as A(x) = logPavg (X] thp) - log})avg (X | )\‘UBNI) (4)

where 10gP, (x|2,,) 1saverage log-likelihood of frame of the

vg
test utterance for hypothesis model and 1ogz, (x(3,,,) 1S average

log-likelihood of frame of the test utterance for UBM model.

This equation gives a relative log-likelihood score between a
speaker and a background model for the observation X. The effect of
Eq. (4) on the speaker verification task is that quality mismatches

which occur between the test observation X and the speaker model

»,, Will have a corresponding effect on the background model,,,, .
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Therefore, effects which lead to a bias in p_(x)3,,)are eliminated in

A(x) due to the relative log-likelihood scoring.

The most frequently score-normalization techniques used are
T-Norm and Z-Norm. These two score-normalization methods lead
to better system performance but they need additional speech data or
external speakers to be computed. In our baseline system, we use a
logistic-regression model to map scores into probability estimates.

The logistic regression model is

1
1+ exp(—(b + yw' x))

p(y==%1l{x,w,b)= (5)

Given the fraining data set {x,y)......(x,,y,)} » W€ Wish to

..........

maximize the likelihood of the observed data. To do this, we make
use of gradient information of the likelihood, and then ascend the

likelithood and we can obtain estimated parameters w and b.

Experiments

Database

The baseline system is evaluated on the cellular telephone
speech, used in the NIST speaker recognition evaluation for 2001. 2
hours of speech from 38 male and 22 female speakers, with 2
minutes each speaker, are used for training the background model.
There are 74 male and 100 female target speakers. Each speaker has

2 minutes of speech for training. 20380 gender-matched verification
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trials from the test set. The duration of each test segment varies from
a few seconds to one minute, with the majority of tests falling into a
range between 15 to 45 seconds. The ratio between target and
imposter is roughly 1:10.
Evaluation measure

The evaluation of the speaker verification system is based on
Detection Error Tradeoff curves, which show the tradeoff between
false alarm (FA) and false rejection (FR) errors. Besides, the equal
error rate (EER), there is also a detection cost function (DCF)

defined for the NIST evaluation:
DCF = CFA Pr(FA | N)Pr(N) + Crz Pr(FR |T)Pr(T) 4)

Where Pr(N) and Pr(T) are the a prior probability of non-target
and target tests with Pr(N)=0.99 and Pr(T)=0.01. And the specific

cost factors Cp, =1 andC., =10. So the point of interest is shift

towards low FA rates.
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Experiment results

As shown in Fig, 2, we extract 19 dimensional MFCC first. The
frame is set to 10ms. Then delta coefficients are calculated to form
38 dimension feature vector. UBM is a 512mixture GMM and target
model is obtained by adapting the mean of UBM.

Speaker Detection Performance
T T T T

Miss probability {in %)

01 Lt I i i P
0pWB51T 2 5 10 20 40 ©0 80 90 @5
False Alarm probability {in %)

Fig. 2
As shown in Fig, 3 and Fig. 4, we extract 19 dimensional
MFCC first. The frame is set to 10ms. Then delta coefficients are
calculated and use normalized energy term to form 40 dimension
feature vector. UBM is a 512mixture GMM and target model is
obtained by adapting the mean of UBM. As we can see in the figure,

energy 1s helpful to reduce equal error rate.
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As shown 1 Fig, 5, we use 40 dimension feature vector.
UBM 1i1s a 512mixture GMM and target model is obtained by
adapting the mean of UBM. And we applied logistic regression
method in score normalization. Since logistic regression is a
discriminative score normalization technique, it can be combined
with target speaker model training. In this report, I only use it to
discriminate target scores and imposter scores.

As we can see in the figure, logistic regression is an effective
discriminative score normalization technique. It has better system

performance in terms of ERR and DCF.

Speaker Detection Performance

Miss probability (in %)

“lenergy

erngrgy+ScoreNorm

5 10 20 40 B0 80 90

° False Alarm probability (in %)
. Fig5

As shown in Fig, 6, we map acoustic vectors at the
filter-bank level such that the test data distribution matches the
training data distribution. But it can be seen in the figure that system

performance decreases. I am still thinking about this result.
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