AT B BT B &A% B i B 3R
(BB - FE)

TIR 5T A B4R B —

Enterprise JavaBean Programming
B%

£

4 v TM Forum Conference

=z

h B R REF

PRI - P B EAS R AT
HEA B R E R

i3 % KA
HEME @ R B EAS K~ B4 Ao
BN 91 F10RA208291 511 A1 A
R BH 91 12 A 23 8

!

,7(ofyoo—ﬁs?

FAf a5 C09200567
AN OHOW OB O® & RE
HE 1 St S

e
MRS B A T R 7 8 B —Emerprise JavaBean Programming B 2111
TM Forum Conference
IR
FEEEEWER
7 N TN
BEEAT /03-4244218
HEAA:
s thIEBEWIGET OIS0EEWIEAE BEMRA
HEER: 'BE
HEIEE: EE
HEEHERS: REIO1I & 10820H -REEE1L B0 H
spaeHE: EEIF12H2BH
S¥EYE/R: H6/ BIE
ReghsE: EAEMEER Enterprise,JavaBean,Programming, TM,Forum
NZ S ASTEEER0EEHE AT E BB B ADSLATM EAEMERG BRI R - - K
LR = BT Web-based 2848 » H HAIFEREESE T Himie TUMERERTH
sEEspg A\ RY7 o BT TR REE S B R A TS Java 2 X
sE=, FSUNAFZ JavaB i fATHIS MRS HIAT - PR HEE KBISUNAH]
2h B3 |skieES2 N " Enterprise JavaBean Programming | BARERAE - ILAIRER
23 AT R EEAR A EI BT - DUR AT E M s S iR eI 3 FE A
FIEEE LR AIE - B NZAYEEE ¢ Session and Entity Beans ~ EIBs #Y
ContainerZEE BEE (R BRI ERGT - HAEFEEHILIERIIRR - S B I2EES AT
& TEARRRER T o LURF A2 B % B R HEEFT R IORGE - SHEER
1% M5 TR (S 55 B 3 98 (TeleManagement Forum) FrE it BARRIERAST
@ AAFIBRSMABT 8 - SHEIWEIGUT T —UHEESIR R
(NGQS%)%’%T%@@% s Rt 5L B B RIS T BAASES - BRIIAA A EIR
) - 2Bt - B T —RIMEET IR R

AEFHE L ELEREESE

2

A E(FRE 0 F)BATEHBIME ADSL/ATM RIREBEIR 4L 4 -
A4 HIR A =P X Web-based 248> X B nikisE A X e rmA#LE
AN RN LB ERGRRETHHRATHEMSZE Java ZXEZT > M
SUN 2 8] 2 Java 347 & 7 7 35548 So s fi - A& £ £ Bl SUN 2 3] 30 F 9 R4
% 4z " Enterprise JavaBean Programming ; 2|4k 3842 - sal4RBR M X A M J2EE
8% EIBs 93 3 > MR EME SR RAREXF L R0 -
#F %8 P 7 6,3% Session and Entity Beans « EJBs #9 Container 24 % £ & o 4t
Hoy o SR B bIA DIk 0 28 J2EE £ T LB s M 64k SR AXREK
HERAGBERTHIMRE -

P E B4 R E BB % o E 15 % 3 3% 38 (TeleManagement Forum) A 5 3% 2
M e AN AR LI R 2AUMNEURTHRT - REELKEZH
(NGOSS)#y A A8 % - R RE BB RSB HMEER Ao ANSRE ~ &%
BB T ROGLELELL -

S LS PR

Enterprise JavaBean Programming

B % Av TM Forum Conference

HBEERSEE

] %

Lo B B et b e ettt ettt be s nene s 1
2. FRFECETBHZE) - eovrereee ettt ettt e ee e et et s e bbbttt eae s 1
2.1 EJB @rChIteCTUIC. .. .ouuiuieiitiiieteieie sttt e 1

2.2 The EJB SEIVET ..ottt ettt ettt ettt een et st 2

2.3 The EJB CONLAINET ...c..eouieiitieiieieic it eieeie et stesceiee e reete e beseae e eeeesae e 2

2.4 How an enterprise bean WOTKSccccvevieriererenie e 3

2.5 Type of Enterprise Beans........cccoeiriieeiiiiceiccee ettt 3
2.5.1 SeSSI0N BEaAN.....cciiiiiiiiiiic e 3

2.5 2 ENtity BEANS.....ooiiiiiiiiiiciic e 5

2.5.3 Message Driven Beansccocoviiiiniiniiiiiie e 6

2.6 Remote and LoCal ACCESS.....uiiiiiiiiiiiieciiicieceieesie et e et 6

2.7 Developing entity DEANSccccoivivviiiicececceier ettt eb e 7

2.8 Persistence and entity DEansccooveoiiiiieiei e 7
2.8.1 Bean-managed PErSIStENCEc.eoeerveverienuerereiiieiiiiiei e eenneie e 8

2.8.2 Container -managed PErSIStENCEoecverrrrruririeniriceienienienereeeeesienns 8

2.9 TM Forum Conference Bot ae e e 8

B I e 11
B a1ttt 11
S A B BT oottt aeaeas 11

1

HAR MR 5 E I & ST —
Enterprise JavaBean Programming

B 4 e TM Forum Conference

H BT E RS E
1. 8¢

A E(HZE 8303t E)B AT EWBI I ADSL/ATM RIRWMBER 24 > K
L e AR K E T AR T S e Java 2 X3E T > @ SUN 8 2 Java
AT BT HGAR oA o B AR B £ B SUN /A 5] 30 F 9l 4k #4484 /v | Enterprise
JavaBean Programming | 3| 43242 - sty 4R A2 % % 4) 2EE48 % EIBs 93 o »
MR B CrHESRBUCERARKXELEN R - AENFTEHE
Session and Entity Beans ~ EIBs &y Container 22 #% % &/F ¥ 2 ohsedkits - A M &
JLIEDIMR 0 2B REE £ T S EMM s ARARREAMER 2k
FRE AR RE

B E D& RIE W S T 1L 4% 39 3% 18 (TeleManagement Forum) A7 S5 #§ 2
W e RN ARABZ G E FHBARNEUTRT - REZLHEASL
(NGOSS)# Rt #2148 % R F 5B sy 7 SLEs » A B AN AME %
I oMBETReEELE LK -

2. BE(EENE)
2.1 EJB architecture

Multi-tier distributed applications often consist of a client that runs on a local
machine, a middle-tier that runs on a server that contains the business logic. and a
backen&l-tier consisting of an enterprise information system (EIS). An EIS can be a
relational database system, an ERP system, a legacy application, or any data store that
holds the data that needs to be accessed. This figure shows a typical EJB multi-tier
distributed system with three tiers: the client; the server, the container, and the beans

deployed on them; and the enterprise information system

FJB Server

FAR Container

MHome Interface

S
N/

Remote Interfacey

“»
z
B
!

Services pravided by server to bean:

Naming
Trunsactrons
Security

Managed persiswnes

Figure 1 : EJB architecture diagram

2.2 The EJB Server

The EJB server provides system services to enterprise beans and manages the
containers in which the beans run. It must make available a INDl-accessible naming
service and a transaction service. Frequently an EJB server provides additional
features that distinguish it from its competitors. The Borland Enterprise Server

AppServer Edition 5.0.2+ is an example of an EJB server.

2.3 The EJB Container

A container is a runtime system for one or more enterprise beans. It provides the
communication between the beans and the EJB server. It provides transaction, security,
and network distribution management. A container is both code and a tool that
generates code specific for a particular enterprise bean. A container also provides
tools for the deployment of an enterprise bean, and a means for the container to
monitor and manage the application.

The EJB server and EJB container together provide the environment for the
bean to run in. The container provides management services to one or more beans.

The server provides services to the bean, but the container interacts on behalf of the

beans to obtain those services. Almost always the EJB server and the EJB container
are made by the same vendor and are simply two parts of an application server.

Although it is a vital part of the Enterprise JavaBeans architecture, enterprise
bean developers and application assemblers don't have to think about the container. It
remains a behind-the-scenes player in an EJB distributed system.

2.4 How an enterprise bean works

The bean developer must create these interfaces and classes:
B The remote home and/or local home interface for the bean
The home interface defines the methods a client uses to create, locate, and
destroy instances of an enterprise bean.
B The remote and/or local interface for the bean
The remote or local interface defines the business methods implemented in the
bean. A client accesses these methods through the remote interface.

B The enterprise bean class

Once the bean is deployed in the EJB container, the client calls the create()
method defined in the home interface to instantiate the bean. The home interface isn't
implemented in the bean itself, but by the container. Other methods declared in the
home interface permit the client to locate an instance of a bean and to remove a bean
instance when it is no longer needed. EJB 2.0 beans also allow the home interface to
have business methods called ejbHome methods.

When the enterprise bean is instantiated, the client can call the business methods
within the bean. The client never calls a method in the bean instance directly, however.
The methods available to the client are defined in the remote or local interface of the
bean, and the remote or local interface is implemented by the container. When the
client calls a method, the container receives the request and delegates it to the bean

instance.

2.5 Type of Enterprise Beans
An enterprise bean can be a session bean, an entity bean, or a message-driven bean

2.5.1 Session Bean

There are two types of session beans: those that can maintain state information
between method calls, which are called stateful beans, and those that can't, which are

(93]

called stateless beans.
1. Stateful session beans

A stateful session bean executes on behalf of a single client. In a sense, the session
bean represents the client in the EJB server. Stateful session beans can maintain the
client's state, which means they can retain information for the client.

Stateful session beans are objects used by a single client and they maintain state
on behalf of that client. For example, consider a shopping cart session bean. As the
shopper in an online store selects items to purchase, the items are added to the
"shopping cart" by storing the selected items in a list within the shopping cart session
bean object. When the shopper is ready to purchase the items, the list is used to
calculate the total cost.

Session beans can be short-lived. Usually when the client ends the session, the

bean is removed by the client

setSessionContext()

ejbCreate() cjbRemove()

ejbPassivate()
el

non-ransaction

methods /

eibActivate()

joins transaction
afterBegin() commitrollback
beforeCompletiond)

afterCompletion()

IrRnSaction
e —— -
methods

Figure 2: stateful session bean life cycle
2. Stateless session beans
Stateless session beans don't maintain state for any specific client. Because they
don't maintain conversational state, stateless beans can be used to support multiple
clients.

setSessionContext()
ebCreate() ¢ibRemove()

business
methods

Figure 3: stateless session bean life cycle

2.5.2 Entity Beans

An entity bean provides an object view of data in a database. Usually the bean
represents a row in a set of relational database tables. An entity bean usually serves
more than one client.

Unlike session beans, entity beans are considered to be long-lived. They
maintain a persistent state, living as long as the data remains in the database, rather
than as long as a particular client needs it.

The container can manage the bean's persistence, or the bean can manage it
itself. If the persistence is bean-managed, the bean developer must write code that
includes calls to the database.

setEnrityContexyi) unsetlntityContext(y

cibFind...0)
methods
ejbCreate())
ejbPostCreate() eibActivatel) | ejbrassivate) ¢jbRemovel)

ejbload() eibStorel}

busiiess
methods

Figure 4: stateless session bean life cycle

2.5.3 Message Driven Beans

The EJB 2.0 specification introduced message-driven beans. They behave as a
Java Message Service (JMS) listener, processing asynchronous messages. The EJB
container manages the bean's entire environment.

Message-driven beans are similar to stateless session beans because they maintain
no conversational state. Unlike session and entity beans, clients don't access them
through interfaces. A message-driven bean has no interfaces, just a bean class. A
single message-driven bean can process messages from more than one client. A
message-dtiven bean is essentially a block of application code that executes when a

message arrives at a particular JMS destination.

2.6 Remote and Local Access

An EJB 2.0 component can be accessed remotely or locally. Clients that access
a remote bean use the bean's remote and remote home interfaces. A remote home is
often referred to as the home interface. A client with remote access to a bean can run
on a different machine and use a different Java Virtual Machine (JVM) than the bean

itself. In method calls to a remote bean, parameters are passed by value, which helps
maintain loose coupling between the client and the bean.

A client with local access to a bean must run in the same JVM as the bean it
accesses. A local client won't be an external client application, but rather another
enterprise bean or web component. In method calls to a local bean, parameters are
passed by reference, resulting in a tighter coupling between the calling bean or web
component and the called bean

.Like the remote interface, the local interface provides access to the bean's
business methods, while its local home interface provides access to the methods that
control the life cycle of the bean as well as its finder methods. Often entity beans that
have a container-managed relationship with other entity beans have local access to
them.

Because beans with local interfaces must run in the same JVM, there is no need
for remote calls. Therefore, the overhead of serializing and transporting objects is
reduced. Usually this means greater performance.

2.7 Developing entity beans

An entity bean directly represents data stored in persistent storage, such as a
database. It maps to a row or rows within one or more tables in a relational database,
or to an entity object in an object-oriented database. It can also map to one or more
rows across multiple tables. In a database, a primary key uniquely identifies a row in a
table. Similarly, a primary key identifies a specific entity bean instance. Each column
in the relational database table maps to an instance variable in the entity bean.

Because an entity bean usually represents data stored in a database, it lives as
long as the data. Regardless of how long an entity bean remains inactive, the container
doesn't remove it from persistent storage.

The only way to remove an entity bean is to explicitly do so. An entity bean is
removed by calling its remove() method, which removes the underlying data from the

database. Or an existing enterprise application can remove data from the database.

2.8 Persistence and entity beans

All entity enterprise beans are persistent; that is, their state is stored between
sessions and clients. As a bean provider, you can choose how your entity bean's
persistence is implemented.

You can implement the bean's persistence directly in the entity bean class, making
the bean itself responsible for maintaining its persistence. This is called
bean-managed persistence.

Or you can delegate the handling of the entity bean's persistence to the EJB

container. This is called container-managed persistence.
2.8.1 Bean-managed persistence

An entity bean with bean-managed persistence contains the code to access and
update a database. That is, you, as the bean provider, write database access calls
directly in the entity bean or its associated classes. Usually you write these calls using
JDBC.

The database access calls can appear in the entity bean's business methods, or in
one of the entity bean interface methods. (You'll read more about the entity bean
interface soon.)

Usually a bean with bean-managed persistence is more difficult to write because
you must write the additional data-access code. And, because you might choose to
embed the data-access code in the bean's methods, it can also be more difficult to
adapt the entity bean to different databases or to a different schema.

2.8.2 Container -managed persistence

You don't have to write code that accesses and updates databases for entity beans
with container-managed persistence. Instead, the bean relies on the container to access
and update-the database.

Container-managed persistence has many advantages compared to bean-managed
persistence:

® Such beans are easier to code.

® Persistence details can be changed without modifying and recompiling the
entity bean. Instead the deployer or application assembler can modify the
deployment descriptor

® The complexity of the code is reduced, as is the possibility of errors.

® You, as the bean provider, can focus on the business logic of the bean and not
‘on the underlying system issues.

Container-managed persistence has some limitations, however. For example, the
container might load the entire state of the entity object into the bean instance's fields
before it calls the ejbLoad() method. This could lead to performance problems if the

bean has many fields.
2.9 TM Forum Conference {432

stk TM Forum Conference 4 3, > TeleManagement World #24t3% % R g ¢+

R & BB BB IRAR A R AR PR e R YRS B A SR » bR Las Vegas
LS & SRR
v" Competitive Strategies

N N N N N N N N

Revenue Management / OpEx to CapEx
New Generation Business Cases
Mobility

SLA/QoS

Service Resource Management

The Service Provider Enterprise

New Generation Networks

Software Development

Controlling Fraud

kAR % #2649 X % 12 New Generation Network iE {8488 L 49;% 3% » TM Forum
Frfg i ey NGOSS & — 8T ARk B o8 e 24 E1E 388y OSS A4 22
WA BEEMSTIHHR

Framework — Integrates Multiple Points-of-view(4e Business Process
Analyst, System Designer...)

Methodology — Business Process Driven

Development — Model-based

Architecture — Tech Neutral & Tech Specific, based on Distributed
Computing principles

Interoperability — Contract/Component-based using Shared
Information Models

Compliance — Testable Adherence

NGOSS H#E%¥ 4 5% » W TEAT

f’f NG SS Points-of-View

™ FO .UM Universi

Figure 5 : NGOSS Points Of View
H PR F eTOM = Business Process Automation ° €eTOM 4 NGOSS
Business View' ¥ #9 process, flows and information & NGOSS system view & K &4

N

TMN Layers: - ‘
correspond with TOM
horizontals

TOM processes are
captured in “FAB” area
of eTOM Operations

Stateqy, nsrasuctare & Produst
Tamagr s || oot || Season
S freono] Rl

- iaprant] Raragwiont

Customes

Operzans.

§

eTOM maps the
* NGOSS Business
View

Figure 6: eTOM: Linkage to NGOSS

KRR T — b ARG LEERIRE - IR E NGOSS 4 4K T &30k - 3%
BT BB OSS & 4ty 185 -
RN -4

Enterprise JavaBeans € & 8943 BR3% LA T R B D £ b 4
R ¢y sukg ey EJB container Z ff R £ - AR EASHZ — M ELagfz X%
FHHA TURHBABREIALOERAR L -EIBRRE R & Fle At %4
SEXDH MBRERERRE FwX §h o KEFRG FHLEARRZAH
% oM TREA bean sy ¥ I > BB A E X & bean BHATHIR 49 B 8% >
WA T EACEER BN OB TR M - AR HITH - KERE - UR
LB T A B HRT £ -

BmETZ > MREBRBAIBAAKHL24METWEE > B4 EB &
BENXHBRRERTESUA T4 4% > B EIB Rt HEnts 284
AN mBE g TAF -

4. ZH

Enterprise JavaBeans 2.0 fv 1.1 RAZ & ey 8 X U A > 888 EIB 42 8 4%
HOR e E S AR IT Roy S E3R 86 M J2EE B R E T & — $E AW
BEF o RRAER 38 OSS % 485 T 048 J2EE MR A BR Das a1k
EMEEL R KRG -

5. 48 M FE
S @A

* http://java.sun.com
« http://www.tmforum.org

