行政院及所屬各機關出國報告

(出國類別：實習)

IOIS應用程式伺服器管理系統—
BEA WebLogic Server Version 7.0 Administration

出 國 實 習 報 告

服務機關：中華電信研究所

出 國 人 職 稱：助理研究員

姓 名：林建興

出國地區：美國達拉斯

出國期間：91.9.29 ~91.10.12
報告日期：91.11.27
摘 要

本計畫(專案860計畫)目前正協助總公司開發IOIS線路供裝維運管理系統，因應總公司之政策，本系統採用三階式Web-based架構，其目的在於減輕使用者端程式維護所須耗費的人力及物力；但在三階式的架構中，應用程式伺服器扮演相當重要的角色，包含系統的穩定度、程式的執行速度、擴充性及容錯度等，都與應用程式伺服器有密不可分的關係。BEA WebLogic Server是目前市場佔有率最高的應用程式伺服器軟體平台，其各項效能數據在眾多應用程式伺服器中皆名列前矛。職奉准至美國BEA公司參加「IOIS應用程式伺服器管理系統-BEA WebLogic Server Version 7.0 Administration」訓練課程，研習內容包含J2EE架構、WebLogic Server架構、transaction monitor、resource management及system administration等相關技術。期望藉由此項訓練，學習J2EE架構中各項相關的技術，以提升未來程式開發及系統維護所需的技能。

目 錄

11. 目的

12. 過程(實習內容)

12.1 Introduction to J2EE Technologies

52.2 WebLogic Server Architecture

62.3 Console Administration

82.4 Administration Server and Managed Server

92.5 Web Application Structure

102.6 Deployment

112.7 Built-in Servlets

112.8 Virtual hosts

122.9 Security Architecture

152.10 Java Naming and Directory Interface (JNDI)

172.11 JDBC

182.12 Connection Pool

192.13 Message-oriented Middleware

252.14 Enterprise JavaBeans

283. 心得

284. 建議

295. 其他相關事項

1. 目的

本計畫(專案860計畫)目前正協助總公司開發IOIS線路供裝維運管理系統，因應總公司之政策，本系統採用三階式Web-based架構，其目的在於減輕使用者端程式維護所須耗費的人力及物力；但在三階式的架構中，應用程式伺服器扮演相當重要的角色，包含系統的穩定度、程式的執行速度、擴充性及容錯度等，都與應用程式伺服器有密不可分的關係。BEA WebLogic Server是目前市場佔有率最高的應用程式伺服器軟體平台，其各項效能數據在眾多應用程式伺服器中皆名列前矛。職奉准至美國BEA公司參加「IOIS應用程式伺服器管理系統-BEA WebLogic Server Version 7.0 Administration」訓練課程，研習內容包含J2EE架構、WebLogic Server架構、transaction monitor、resource management及system administration等相關技術。期望藉由此項訓練，學習J2EE架構中各項相關的技術，以提升未來程式開發及系統維護所需的技能。

2. 過程(實習內容)

2.1 Introduction to J2EE Technologies

WebLogic Server (WLS) is an application server that provides an implementation of the J2EE specification. By supporting all of the specifications of J2EE, WebLogic Server can provide a scalable, fault tolerant environment for compliant applications to execute within. By standardizing the process for how pieces of software are developed, the J2EE specification has paved the road for companies such as BEA to create application servers that automate many of the complicated distribution services that you had to tackle yourself in the past.

Sun Microsystems has defined a specification for classifying entire platforms and application servers as J2EE compliant. The diagram (Figure 1) is the general architecture that must be supported by a J2EE platform. The J2EE platform consists of application components (which include application clients, Applets, Servlets and JSPs, and EJBs), containers (which provide run-time support for the components), resource manager drivers (which implement network connectivity to an external resource manager), and a database (which is used for the storage of business data). The J2EE also includes standard services which include HTTP, HTTPS, Java Transaction API, RMI-IIOP, JavaIDL, JDBC, Java Message Service, Java Naming and Directory Interface, JavaMail, and JavaBeans Activation Framework. Many of these technologies will be discussed in the following paragraphs.

[image: image1.jpg]The J2EE Architecture

WebLlogic Server
J2EE Application Server

Directory Service

Web Client » Web éohtai—neré %8
HTML/XML . |
Serviets | | -
| |[EJB Container T Ty
Applet | » | 3SPs || session RDBMS
- : EJBS MR e
Client <l Entily CORBA
Application EJBs Sl
Java App
§ :

8 oleice|s | =5 Message Queue
= @ = € = = P |Z
§%>gm><52 0000060
e

Web Service
Distributed Architectures and WLS Copyright © 2002 BEA Systems Inc. DAWL-6

Figure 1 : The J2EE Architecture

The JDBC specification, which is currently on version 2.0, defines an interface for Java programs to use and, an interface that database vendors can develop custom drivers for. Application developers will only have to learn the single JDBC API. The JDBC API is designed to work with any JDBC driver. Any proprietary driver that is developed by a database vendor will be compatible with a JDBC program.

Naming and directory services are used to hierarchically structure items that need to be made available to distributed programs. Naming and directory services provide lookup, search, and binding features to their clients. Clients can navigate the trees and contexts of a naming or directory service in search of the object they require. There are a variety of different naming and directory services available. JNDI is an API and a standard that Java programs use to access existing naming or directory services. JNDI is not a naming or directory service! It is merely the mapping. Different naming and directory services stores objects in various ways. WebLogic Server has its own proprietary naming service that it uses to store configurable Java objects. Client programs connect to the naming service and download various Java objects that they will need to use.

A Servlet is an independent thread of control that runs in the context of the server. The server acts as the “environment” in which the Servlet lives. The server controls the life-cycle, security, and execution of the Servlets within its environment. This means that the server is responsible for the creation, access, and destruction of the Servlet.

Since the Servlet is a server-side resource it has access to all resources available on the server. This includes databases, transaction monitors, files, directory structures, and naming services. The Servlet uses all the available resources to generate a dynamic response for the client. The generated response is dynamic because the data being pulled from the resources is non-deterministic and unpredictable.

JavaServer Pages (JSPs) are HTML documents that are embedded with special tags to insert Java code, hence providing dynamic content. When the user makes a request on a JSP, the server executes the Java code and generates an HTML document on the fly, which is sent to the client. One of the benefits of JSPs is the separation of responsibilities between the presentation to the client and the dynamic content. The Web artists can easily do their job and make the Web page look aesthetically pleasing; and then the Java programmers can add their code to make the page dynamic. Since JSPs are written in the Java programming language they are portable; they can be written once and deployed in any JSP-compliant server.

JTA specifies standard Java interfaces between a transaction manager and the parties involved in a distributed transaction system: the resource manager, the application server, and the transactional applications. The JTA specification was developed by Sun Microsystems in cooperation with leading industry partners in the transaction processing and database system arena.

WLS supports also JTS, which is a lower-level interface specification for transaction managers. This interface in fact follows the JTA specification for managing transactions in Java, and also supports the OTS specification to provide CORBA-ORB/TS-type transaction management.

Enterprise messaging is now recognized as an essential tool for building enterprise applications. By combining Java technology with enterprise messaging, the JMS API provides a new, powerful tool for solving enterprise computing problems. Enterprise messaging provides a reliable, flexible service for the asynchronous exchange of critical business data and events throughout an enterprise. The JMS API adds to this a common API and provider framework that enables the development of portable, message-based applications in the Java programming language.

The JMS API improves programmer productivity by defining a common set of messaging concepts and programming strategies that will be supported by all JMS technology-compliant messaging systems.

EJBs are the most celebrated part of the J2EE environment. They make it possible for relatively new programmers to develop useful parts of highly complex, transaction aware, scalable enterprise applications. They also facilitate creating numerous front-end applications, based on a common set of middleware. How can this be? When you build using EJBs, you rely on tools like WebLogic Server to do the hard work for you.

Single sign-on is a very important authentication feature specified by JAAS, since, in a heterogeneous system, many authentication systems may exist. It is not acceptable to force a user to type in multiple passwords and have to synchronize these passwords. The single sign-on framework specified by JAAS solves this problem. WebLogic Server does not support single sign-on at the moment.

With the Pluggable Authentication Module (PAM) framework, multiple authentication technologies can be added without having to change any existing login services. PAM can be used to integrate login services with different authentication technologies.

JMX is a standard way to automating management for devices, using Java as the control language. We can compare JMS to other technologies, like JDBC. JDBC allows a database vendor to develop its product without worrying about how the database will be accessed. All that is needed is a JDBC driver, which acts as a contract between the vendor and the clients. In this similar fashion, the client can switch from one database to another without worrying about compatibility. For JMX, it’s a similar situation. In theory, JMX enables decoupling of the managed device from its management software. The device vendor will develop its management beans (MBeans) along with its device, so clients can automate the management of the device seamlessly. WLS uses JMX extensively internally to handle the configuration and state of the system.

Web Services introduce a new development paradigm, that of the Service Oriented Architecture. A Service Oriented Architecture focuses on broader level solutions to problems that potentially encapsulate entire solutions into a single “service”. Such services can then be combined in whatever way required in order to solve a problem. What’s so exciting about Web Services is that service consumers do not need to know who provides a service, only what service they need, when they need it. At any moment any number of service providers may exist, each providing a service with a different level of cost, reliability, performance or some other factor. The service consumer can then choose which provider fits his need, when the need is encountered!

2.2 WebLogic Server Architecture

[image: image2.jpg]-

Client

Appllcatlon Logic

Web Weblogic as a
. —— e .
Client Web iServer .
BEA
~ Weblogic
_ Server
Client |, Weblogicasan |
Application App Server

Data

Distributed Architectures and WLS

Copyright © 2002 BEA Systems Inc.

DAWL-34

Figure 2 : The big picture of a distributed system

Figure 2 is a big picture of a distributed system with WebLogic Server as the middleware. No matter how complicated your system may be, you can generally break it down into these categories :

․a client layer

․an application logic layer

․a data layer

Broadly speaking, WebLogic Server acts as both an application server and a Web Server. This means WLS can send Web pages, and it can support built-in applications such as EJBs.

WebLogic Server is the environment that the application logic resides. The application logic layer can be broken down into two levels : the presentation logic and the business logic (as show in Figure 3). Each layer is comprised of various J2EE technologies that were introduced in previous paragraphs.

[image: image3.jpg]| 1sPs m HTML/XML/WML

- Web Contamer

...............................

_EIB Contame,-

Message E”t'ty SeSSIon
l Beans Beans Beans

WebLogic Server

c’ "ﬂv

Presentation
Logic

Business
Logic

Distributed Architectures and WLS Copyright © 2002 BEA Systems Inc.

DAWL-36

Figure 3 : Application Logic Tier

2.3 Console Administration

The WebLogic Server Administration Console is the main tool used for managing resources in WebLogic Server. Managing these resources includes such tasks as stopping servers, balancing the load on servers or connection pools, selecting and monitoring the configuration of resources, detecting and correcting problems, monitoring and evaluating system performance, and deploying Web Applications, Enterprise JavaBeans (EJBs) or other resources.

If you have your browser configured to send HTTP requests to a proxy server, then you may need to configure your browser not to send administration server HTTP requests to the proxy. If the administration server is on the same machine as the browser, then you would want to ensure that requests sent to localhost or 127.0.0.1 or both are not sent to the proxy.

When started, the Administration Console prompts for a password. The first time the Administration Console is started, you can use the username and password under which the administration server was started. You can use the Administration Console to create a list of users with administration privileges. Once designated, these users can also perform administrative tasks via the Administration Console.

[image: image4.jpg]|

Using the Administration C

@ Console
£ @ examples
& Hservers
@ examplesServer
Hciusters
EMachines
ZNetwork Channels
Deployments
Eagplications
& EEp
B [vvab Applications
2 Eweb Senvice Components
Connectors
Startup & Shutdown

EdwebLogic Tuxedo Connector
Hyott
Evinual Hosts
Szl
E3FileT3
= Ssecuriy
& &6 xsacury
Epomain Log Filters
ETasks

e7Configure a new Server...

B Customize this view... 4—-@

ort Listen
[true

E examplesServer {7001 :

ons

ale "I] 4

{RUNNING 5 &

®

Basic WLS Administration

Copyright © 2002 BEA Systems Inc.

BWLA-26

Figure 4 : Administration Console of WLS

Figure 4 is the Administration Console of WLS. It can be devided into five parts. Each part has a simple introduction below :

1. The left panel in the Administration Console contains a hierarchical tree for navigating to tables of data, configuration pages and monitoring pages, or Accessing logs.

2. The right hand panel of the Administration Console shows detailed configuration information about the selection in the left panel.

3. By selecting (that is, left-mouse clicking) an item in the domain tree, you can display a table of data for resources of a particular type (such as WebLogic Servers) or configuration and monitoring pages for a selected resources. The top-level nodes in the domain tree are containers. If leaf nodes are present in those containers, you can click on the plus sign at the left to expand the tree to access the leaf nodes.

4. The entity tables (tables of data about resources of a particular type) can be customized by adding or subtracting columns that display values for attributes.

5. You can customize a table by following the Customize this view link at the top of the table. Each column in the table corresponds to an attribute that has been selected for inclusion in the table.

A WebLogic Server can be in one of several states at any given time, and it follows a set of rules that determine how and when it can transition between those states. The series of states through which a server transitions is called the server lifecycle. Figure 5 show the all different states in WLS.

[image: image5.jpg]Server 'S,;tatev ;Dia‘g ram

i

s

L

Shutdown

¥

(

Starting J (Shutting Down)

Standby

k.

4 'y

4

y

—
' Resuming
Ny

Running j

Basic WLS Administration

Copyright © 2002 BEA Systems Inc. BWLA-30

Figure 5 : Server states in WLS

2.4 Administration Server and Managed Server

A WebLogic Server running the administration service is called an administration server. The administration server provides the central point of control for configuring and monitoring an entire domain. An administration server must be running in order to perform any management operation on a domain. In a configuration with multiple WebLogic Servers, only one server is the administration server, the other servers are called managed servers. Each managed server obtains its configuration at startup from the administration server.

A managed server is simply a single server that boots on a remote, or perhaps the same, physical machine and loads its configuration from a specified administration server. Managed servers get all of their configuration information from the remote administration server and need only know the domain and server they represent in a domain.

Figure 6 shows the critical components of a domain. A domain is an arbitrary logical administration unit managed by one administration server. A domain can encompass clusters in different geographies.

[image: image6.jpg]Domain Overview

Domain
Get configuration
a}étﬁt@ S

Managed
Server 1

/ ;
Critical Domain / ~{ Local Logging
Notifications /
b Domain Log_

<JAdministration |4 ~ Messages
Server & = -

Managed
Server 2

Console

GET/SE > N
N
: N

= » config.xml e \/ Managed

onitor
_ : lipdate Server 3
Configuration et Local Logging
Repository

Working with Managed Servers Copyright © 2002 BEA Systems Inc. WWMS-6

Figure 6 : Domain Overview

2.5 Web Application Structure

Programmers develop their Web Application within a specified directory structure so that is can be archived and deployed on WebLogic Server, or another Servlet 2.2 compliant server. All Servlets, classes, static files, and other resources belonging to a Web Application are organized under a directory hierarchy. The root of this hierarchy defines the document root for yours Web Application. All files under this root directory can be served to the client, except for files under the special directories WEB-INF and META-INF located in the root directory. The root directory should be named with the name of your Web Application.

Private files should be located in the WEB-INF directory, under the root directory. All files under WEB-INF are private, and are not served to a client. Make sure the WEB-INF directory contains the following directories and files :

․MyWebApplicationName/---Place your static files, such as HTML files and JSP files in this directory (or a subdirectory). This directory is the document root of your Web Application.

․/WEB-INF/web.xml---The Web Application deployment descriptor that configures the Web Application.

․/WEB-INF/weblogic.xml---The WebLogic-specific deployment descriptor file that defines how named resources in the web.xml file are mapped to resources residing elsewhere in WebLogic Server. This is also used to define JSP and HTTP session attributes.

․/WEB-INF/classes---Contains server-side classes such as HTTP Servlets and utility classes. (Optional)

․/WEB-INF/lib---Contains .jar files used by the Web Application. (Optional)

2.6 Deployment

An Application must first be deployed before it can be used by a client. This involves :

1. Installed refers to making the application available to the file system of the Administration Server. One of the simplest methods is to copy the Web Application to the ‘applications’ subdirectory of the user domain. Alternatively, you can “point” the Administration Server to access the application archive file or exploded directory within the file system.

2. Configured refers to the updating of the config.xml file with the configuration information required to define the Web Application. A Web Application can be configured without first being installed. The order in which these occur is dependent on the type of deployment used.

3. Targeted refers to specifying what servers will run that application.

4. Deployed refers to the “activation” of the application in every target server. A deployment task is started on the Administration Server which attempts to complete this phase.

Exactly which of these steps is automatic and which are under an administrators control depends upon the deployment method used. WebLogic Server 7.0 supports three distinct deployments methods for your applications. Different deployment methods are provided because different scenarios exist in which applications execute. For instance, a WebLogic Server system could be used for development, testing, staging, or production. The method of deployment could be dependent upon the domain that it is deployed to.

2.7 Built-in Servlets

WebLogic Server does most of its processing via Servlets. All HTTP requests that enter WebLogic Server are always mapped to some Servlet regardless of the type of processing that is requested. WebLogic Server provides a variety of built-in Servlets that “mimic” the behavior of many aspects of a Web server. For instance, the FileServlet is executed by WebLogic Server any time a static document such as an HTML page needs to be sent to a browser. When the FileServlet executes, it goes to the file system, locates the document, and sends it to the requesting client. Another example is the HttpProxyServlet. When configured, the HttpProxyServlet will take HTTP requests and forward them to another Web server, if needed. In reality, nearly everything that WebLogic Server can do as a Web server is based upon the features of the Servlets provided within WebLogic Server. This is an advantage because once you know how to configure Servlets within WebLogic Server, you will have the knowledge necessary for configuring most of the other features that WebLogic Server provides. The built-in Servlets are :

․FileServlet : serves static documents

․JSPServlet : handles JSP requests

․CGIServlet : handles CGI requests

․HttpProxyServlet : proxies HTTP requests to another server

․HttpClusterServlet : balances requests across many machines in a cluster

2.8 Virtual hosts

Virtual hosting allows you to define host names that servers or clusters respond to. When you use virtual hosting you use DNS to specify one or more host names that map to the IP address of a WebLogic Server or cluster and you specify which Web Applications are served by the virtual host. When used in a cluster, load balancing allows the most efficient use of your hardware, even if one of the DNS host names processes more requests than the others.

For example, you can specify that a Web Application called books responds to requests for the virtual host name www.books.com., and the that these request are targeted to WebLogic Servers A, B and C, while a Web Application called cars responds to the virtual host name www.autos.com and these requests are targeted to WebLogic Servers D and E. Depending on your application and Web server requirements, you can configure a variety of combinations of virtual host, WebLogic Servers, clusters and Web Applications.

One instance of WebLogic Server can be configured to look like several instances. WebLogic Server allows you to create virtual hosts and deploy Web Applications based on those virtual hosts. Therefore, depending on the request in the URL, different applications are available to the client. In Figure 7, the top virtual host is named VirtualHost1 and responds to the URL www.example.com. There are three Web Applications deployed on this virtual host; therefore any client making a request on www.example.com has three Web Applications available to them. The bottom virtual host is named VirtualHost2 and responds to the URL www.demo.com. When clients make a request on this instance of WebLogic Server with the URL www.demo.com, they have two Web Applications available to them.

[image: image7.jpg]The Big' PiQ_tWQ ‘qf "Vir,t‘uél Hosﬁtih‘g/ f

Requests for www.demo.com

WLS Serving the Web Copyright © 2002 BEA Systems Inc.

Figure 7 : Virtual Hosts in WLS

2.9 Security Architecture

The WebLogic Security Service consists of :

1. A set of Security Service Provider Interfaces (SSPIs) for developing new security services that can be plugged into the WebLogic Server environment. SSPIs are available for Authentication, Authorization, Auditing, Role Mapping, Keystore (PKI), and Credential Mapping.

2. A set of WebLogic security providers. These security providers are the BEA implementation of the SSPIs and are available by default in the WebLogic Server product. The WebLogic security providers include : Authentication, Authorization, Auditing, Adjudication, Role Mapper, Keystore, Credential Mapper and Realm Adapters.

3. A set of Application Programming Interfaces (APIs) that allow application developers to specify authorization information that is used when WebLogic Server is acting as a client, and to obtain information about the Subject and Principals used by WebLogic Server. The APIs are located in the weblogic.security package.

4. Support for JDK 1.3 (Java Secure Socket Extension, Java Authentication and Authorization Services and Java Security Manager).

[image: image8.jpg]Securlty Archltecture

Client

 WLS Security APl || Java 2 Security

Application Developer

v v

WebLogic Security Service Provider Interfaces (SSPIs)
Authentlcatmn l Authorization _ Auditing Adjudication
S8RI SSPI S8P1 _S8PI

ERole Mapping J Keystore Credenha! Mappmg
sSSP L sset SSPI

Security Vendor or Sophisticated Application Developer

WebLogic Secuntv Providers

M Authonzaﬁm—j Auditing j| Adjudication
Ml Kethore »]“-.;_:CredentxialMappE| Realm Adap_tE]

Administrator

Security Copyright © 2002 BEA Systems Inc. SCTY-4

Figure 8 : Security Architecture

All requests coming into WebLogic Server go through a connection filter (Figure 9). The connection filter will look at the IP address, hostname, port and protocol of the sender and determine whether or not the connection is allowed. The request is then sent to the appropriate container on the application server. The container will delegate authentication and authorization decisions to the security service will act as the policy decision point.

[image: image9.jpg]Directory Service

Agent (LDAP)

Web Client

Proxy

Plug-in

T
MBeans |

e

Client

Security Service

\ 4

I9}jid UonoBUL0D

EJB WebApp i App :

WebLogic Server

Security

Copyright @ 2002 BEA Systems Inc.

Figure 9 : Process Architecture

[image: image10.jpg] Security Ser\nces

EJB
Client

WLS
Authenticate "| login _ Login
(JNDI/JAAS) | Module(s)
sign T
Subiject . T
< J _ Principal
MyEJB.7o00) Validator(s)
& Subject
get role
i 2 Access
Decision
adjudicate %lAdjudicator
foo()

Pt

:a L
2 116a

Security

Copyright © 2002 BEA Systems Inc.

SCTY-6

Figure 10 : Security Services

In simple authentication, a user attempts to log into a system using a username/password combination. The WebLogic Server establishes trust by validating that user’s username and password, and returns a Subject that is populated with Principals. This process requires the use of a JAAS LoginModule and Principal Validation provider. After successfully proving a caller’s identity, an authentication context is established, which allows an identified user or system to be authenticated to other entities.

During the authorization process, WebLogic Server determines if a given Subject can perform a given operation on a given resource, and returns the result of that decision to the client application, this process requires the use of Access Decisions, an Adjudication provider, and possibly multiple Role Mapping providers.

Roles are obtained from the Role Mapping providers and input to the Access Decisions. The Access Decisions are then consulted for an authorization result. If multiple Access Decisions are configured and return conflicting authorization results (such as PERMIT and DENY), an Adjudication provider is used to resolve the contradiction by returning a final decision.

2.10 Java Naming and Directory Interface (JNDI)

JNDI comes with two interfaces : the Application Programming Interface (API) and the Service Provider Interface (SPI). You can use the API in an application to access a naming or directory service. You can use the SPI to program a new service to be used as a naming or directory service.

By providing a well-designed, object-oriented interface for accessing naming and directory services, Java programmers will not have to be bogged down by the details and idiosyncrasies involved with accessing a native library of one of these services. Broad support already exists for JNDI and there are already at least 10 service providers who have provided implementations according to the SPI specification.

The integrated naming service provided by WebLogic Server JNDI may be used by many other WebLogic services. For example, WebLogic RMI can bind and access remote objects by both standard RMI methods and JNDI methods. Another example, when WebLogic Server starts, it deploys a home stub into JNDI for each EJB that is deployed in the system. These home stubs are available for use by clients of WebLogic Server. The client uses the home stub to create an EJB instance on WebLogic Server.

[image: image11.jpg]o® %

JNDI Structure TR
L \ % hea
Application Code \évg,t;fgpzz'
INDI API
__Naming Manager _ INDI API
INDI SPI

WLS | LDAP |File Sys| DNS

; . : : Other | Purchased
Driver | Driver | Driver | Driver
I

\ 4 A A
WLS | LDAP File DNS
Server | Server | System | System

Other | Service

-
} Java Naming and Directory Interface Copyright © 2002 BEA Systems Inc. JNDI-5

Figure 11 : JNDI Structure

As you can see, there exists a variety of naming and directory services in production today. These include services such as :

․Lightweight Directory Access Protocol (LDAP)

․Domain Name service (DNS)

․Network Information Service (NIS)

․Remote Method Invocation (RMI)

Using the JNDI SPI, service providers for these industry naming and directory services provide a mapping from JNDI to their particular service. Java applications can then use the JNDI API to access any individual service uniformly. Access to the service is provided via a Naming Manager. WebLogic Server also provides naming services to client applications. These are mainly used for looking up EJBs, DataSources, JMS queues, etc.

As an administrator you may be wondering why you need to understand about JNDI. However, you will be responsible for verifying an object was bound into the JNDI tree, configuring contexts within the JNDI tree, and setting security within the JNDI tree. Figure 12 shows how to view the JNDI tree in WebLogic Server administration console. You can follow these steps :

1. Right-click on a server.

2. Click on View JNDI tree. (It will open the JNDI tree in a new window.)

3. Explore the tree and select a binding.

4. View the attrirbutes.

[image: image12.jpg]Viewing the JNDI Tree -

® Console
B @ gamoles
8 Eservers
@ samplesServe:
Eclusters
achines
ENetwork Channels
& Hpeployments
@ Egenices
B Ssecuriy
B securlty
£3pomain Log Filters
Erasks

& examplesseer
® ejp20-statefuiSession-TraderHome
& Eweblogic
@ gjn20-containel AccountHome
8 [HnomeMethods
% cjb20-statelessSession-TracerHome
@ xml-xsit-ContentHome_EO S 5
m Elﬂ;—;m;}dnc—Retemmm,—mma_EO ‘ Bind Name:
® |doc-oracleBxtensions-ExtensionsHome_EC - §
@ ¢jb20-beanManaged-AccountHome object Class:
@ jdoc-oracleExtensions-ExtensionsHome @
@ examples-dataSource-cemoXAPoal
& Ejavax 2 Object Hash Code:
@ quotes _
® jta-jmsjdbe-ReceivelnTxHome ¢ : Srep
@ webservices-ejb20-statelessession_EO ¢ ObIECt To Stnng‘
@ xml-xsit-ConlentHome
® yrensenvices-ejh20-statelessession
@ examples-dalaSource-demoF ool
® ¢jh20-statelessSession-TraderHome_EO

ejb20-statefulSession-TraderHome

Java Naming and Directory Interface Copyright © 2002 BEA Systems Inc. JNDI-11

Figure 12 : Viewing the JNDI Tree in WLS

2.11 JDBC

JDBC is an API for accessing databases in a uniform way. The value of the JDBC API is that an application can access virtually any DataSource and run on any platform with a Java Virtual Machine. In other words, with the JDBC API, it is not necessary to write one program to access a Sybase database, another program to access an Oracle database, another program to access an IBM DB2 database, and so on. You can write a single program using the JDBC API, and the program will be able to send SQL or other statements to the appropriate DataSource. And, with an application written in the Java programming language, you do not have to worry about writing different applications to run on different platforms.

The JDBC API is a natural Java interface for working with SQL. It builds on ODBC rather than starting form scratch, so programmers familiar with ODBC will find it very easy to learn. The JDBC API retains some of the basic design features of ODBC; In fact, both interfaces are based on the Open Group (formerly X/Open) SQL CLI (Call Level Interface). The big difference is that the JDBC API builds on and reinforces the style and virtues of Java, and it goes beyond just sending SQL statements to a relational database management system.

JDBC accomplishes databases connections by using a driver mechanism that translates JDBC calls to native database calls.

[image: image13.jpg]Managing Data Access Copyright © 2002 BEA Systems Inc. JDBC-4

Figure 13 : JDBC Architecture

2.12 Connection Pool

A connection pool is a group of ready-to-use database connections. WebLogic Server opens JDBC connections to the database during the WebLogic startup process and adds the connections to the pool. This is faster than creating a new connection on demand. The size of the pool is dynamic and can be fine-tuned.

Client use a connection pool by borrowing a connection, using it, then return it to the pool by closing it. The connection pool can grow or shrink dynamically to accommodate demand. The Administration Console is used to set a connection pool’s initial capacity, maximum capacity and its capacity increment. Developers can utilize connection pools from server-side applications such as HTTP Servlets or EJBs using the WebLogic Pool driver or from stand-alone Java client applications using the WebLogic RMI driver. To create a connection pool in Administration Console, you can follow these steps :

1. Click to expand the JDBC node, then select the Connection Pools category. The Connection Pool table displays in the right pane showing all the connection pools defined in your domain.

2. Click the “Create a new JDBC Connection Pool” text link. A dialog displays in the right pane showing the tabs associated with configuring a new connection pool.

3. Set the configuration information for the parameters.

4. Click the Create button to save your change.

You can view the configured JDBC connection pools for a domain by expanding the JDBC node and clicking on Connection Pools. The configuration information for the connection pools will be displayed in the right pane of the Administration Console (Figure 14).

[image: image14.jpg]Creating a Connection Pool...

i e

@WOonﬁqure a new JDBEC Connection Poal ..

® Console mvdom tion ..> Crea
= ® mydomain - s

& Edgerers
Hcusters
Evachines
Zlnetwork Channels
Hpeployments
& Cserices

B Edypec
connection Pools @ ([ﬁ? Name: MyJDBC C =

EdmultiPools
E3Data Sources E P 5 hi
EiTxData Sources 4% URL: fidbezp EEver.mack
4 pBCData Source Factories 5 - - - -
@ s A7 Driver Classname: {com.pointbase jdbc.jdbcUnivers
@ EMessaging Bridge

user=someUser
D.ra Properties password=somePassword
@ Edgnmp A% Kovevilia)
Bwiec 3 (key=value):
EwabLogle Tuxedo Connector™=

Edyont
annuamusis &% ACLName: {NameOfPoolForACL
Epail
HrieTs A% Password: |

@ Edgecurty
Epomain Log Filers &% Open String Password: |

HTasks b k

Managing Data Access Copyright © 2002 BEA Systems Inc. JDBC-27

Figure 14 : Create a Connection Pool in WLS

2.13 Message-oriented Middleware

Message-oriented middleware has been in existence for a couple decades. It took on more popular forms during the mid-1980s when message-oriented middleware providers created architectures that could behave similarly on a variety of platforms. They made large inroads into bridging the gap between the many platforms that existed for mainframes and personal computers. Today, there are 100s of companies that consider themselves to be middleware firms. Even though there is a lot of competition and variety that exists for message-oriented middleware products, they all tend to fall into one of three categories :

․publish/subscribe

․point-to-point

․request-reply

[image: image15.jpg]| PTP Queues

~, e

B4

Producer

Producer

Dlstnbution
 Queue

- 987654.

= Many producers can semalzze messages to
multiple receivers in a queue.

Messages are delivered
to a single client

s

Consumer

Queue Manager -
Webl ogic Server

Consumer

Consumer

Java Messaging Service

Copyright © 2002 BEA Systems Inc.

JMS-4

Figure 15 : Point-to-Point Queue

[image: image16.jpg]Pub/Sub Topics

’I!"'
>

]

= Publishing and subscribing to a topic
decouples producers from consumers.

Messages are delivered
to a single client

B4

7] N NG
Producer E— TOpiC Consumer
| o[8[7]e[s[4] | |] D =1
P Consumer
~ Topic Manager E @
Producer T?j’" WebLogic Server [b Consumer
JMS-5

Java Messaging Service

Copyright © 2002 BEA Systems Inc.

Figure 16 : Pub/Sub Topic

When using a PTP queue, multiple producers can place messages onto the queue. The queue serializes the messages into a linear order. Multiple receivers can take messages off the queue, but the messages typically come off in a first-in, first-out (FIFO) order. This means that the oldest message on the queue is the first one to be taken off. A message can also only be delivered to a single receiver. An example of when to use a PTP queue would be at a call center. Calls get routed into the network through a PBX. The PBX places incoming calls onto an "Incoming Call" queue. When a service representative becomes available, the representative requests the next caller in the system. The system pulls the caller who has been waiting the longest off of the queue and routes the caller to the service representative. (Figure 15)

Having the publishers publish to a topic instead of directly to a list of subscribers decouples the publishers and subscribers. By doing this, the publishers no longer have to worry about the number of subscribers (if any) that need to receive the message. Also, by delegating the work of the message delivery to the message-oriented middleware server (which manages the topic), the publisher does not have to worry about the delivery of guaranteed messages, fault tolerance of its production, load balancing, or other issues. Also, by decoupling a subscriber from the publisher, the subscriber does not have to concern itself with whether its publisher is active or not. As long as the message-oriented middleware server is executing, the needs of both publishers and subscribers will be met.

An example of using a pub/sub topic would be a stock ticker application. A typical system would set up a topic for each stock that is traded on the different exchanges. When a trade is made on a stock, the respective exchange would publish a message to the topic associated with the stock traded. Clients who are interested in receiving updates about the status of their stocks would have a program that subscribes to the topics of each stock they are interested in. When it receives a message, the message-oriented middleware server would broadcast the message to all interested stock ticker programs. (Figure 16)

The WebLogic Server implementation of JMS fully supports the PTP and Pub/Sub domains of messaging middleware. WebLogic Server also provides ACK-based guaranteed message delivery (GMD). Ack-based GMD persistently stores messages until the receiver of the message issues an acknowledgement reply that indicates successful receipt of the message. WebLogic JMS uses its built-in support for JDBC and JDBC connection pools to persist JMS messages in a connection pool database.
Transactional message delivery gives the developer the ability to place a JMS session into a transaction context. Sessions that are located in a transaction context "buffer" the messages that they produce and do not transmit the messages until the transaction is committed. Once the transaction is committed, the messages that the session has buffered are transmitted to their respective destinations. A session can optionally roll back the transaction, which has the transaction "drop" the messages it had previously buffered.

WebLogic Server allows clients to register themselves as a durable subscriber. A durable subscriber is a client that expects to receive all persistent (GMD) messages sent to a particular destination, whether the client is currently executing or not. If the durable subscriber is not currently executing, WebLogic Server will store the messages in a database until the durable subscriber reactivates and retrieves the stored messages.

WebLogic Server also allows an administrator to configure a server-side consumer session pool. A server-side session pool manages a pool of JMS sessions, each executing within their own thread. Each thread is capable of receiving and handling messages of the same type independent of the other threads in the session pool. Implementing a server-side session pool allows messages of a similar type to be processed in parallel by clients executing on the WebLogic Server. Figure 17 is a detailed diagram of the WebLogic Server JMS architecture.
[image: image17.jpg]JMS Architecture: Connecting

Client 5

lookup
ConnectlonFactory ‘Connec tionFactory

=y @
!@ Crea‘te a connection
v

Conpecﬁn :
l Crebte a Session

Three things are needed
to send messages:

1. Connection

2. Session

? e e 3. Destination
o Destination returned

lookup a Destination

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
1
i
i
i
1
i
i
i
i
i
i
i
1
i
i
i
1
i
1
i
i
\

Java Messaging Service Copyright © 2002 BEA Systems Inc. JMS-9

Figure 17 : JMS Architecture in WLS

[image: image18.jpg]JMS Architectu re: »-Seh_iclingﬁ’{f*‘l\lle(s’f_Sa_ge's;

S s

Client

\
1
1
i
i
i
i

Connection, Session
and Destination are
used to send out a
message

i Connection @ :

Session = 0
Message

Destination :
i
i !
g Messages in durable

' i topic destinations are |

R persisted

Java Messaging Service Copyright © 2002 BEA Systems Inc. JMS-10

Figure 18 : JMS Overview in WLS

In WLS the messaging service is implemented through a JMS Server. A JMS Server is responsible of receiving messages and distributing them. Figure 18 shows the overview of WLS JMS Server.

A JMS Server is created and configured in the Administration Console. To create a JMS server :

1. Expand the JMS node in the left panel. Select Servers under the JMS node. The JMS Servers table displays in the right pane showing all the servers defined in your domain.

2. Click the Create a new JMS Server text link. A dialog displays in the pane showing thee tabs associated with configuring a new server.

3. Enter values for the configuration parameters

4. Click Create to create a server instance with the name you specified in the Name field. The new instance is added under the JMS Servers node in the left pane. A JMS Destinations node and a Session Pools node are automatically added under the new server instance by default. (Don’t forget to target this JMS server.)

To create a JMS queue destination in the Administration Console :

1. Click to expand the JMS node. Click to expand the JMS Servers node. Click to expand a server instance under JMS Servers. Click the JMS Destinations node. The JMS Destinations table displays in the right pane showing all the JMS queues and topics.

2. Click the Configure a new JMSQueue text link. A dialog displays in the right pane showing the tabs associated with configuring a new queue.

3. Enter values for the configuration parameters.

4. Click Create to create a queue instance with the name you specified in the Name field. The new instance is added under the JMS Destinations node in the left pane.

To create a JMS topic in the Administration Console :

1. Click to expand the JMS node. Click to expand the JMS Servers node. Click to expand a server instance under JMS Servers. Click the JMS Destinations node. The JMS Destinations table displays in the right pane showing all the JMS queues and topics.

2. Click the Create a new JMS Topic text link. A dialog displays in the right pane showing the tabs associated with configuring a new queue.

3. Enter values for the configuration parameters.

4. Click Create to create a topic instance with the name you specified in the Name field. The new instance is added under the JMS Destinations node in the left pane.

[image: image19.jpg]i

@ Console

2 @ JMsDomain

Elgervers
Eclusters
Edmachines
EdNetwork Channels
ﬂDeployments
B Elserices
Hipec
= Eus
Zconnection Factories
ﬁTemplates
Elpestination Keys
Hlstores

HDpistributed Destinations

Zsgervers
:"EMessaging Bridge
L
@ uta

&2 Name:

? Store:
? Paging Store:

A% Temporary Template:

Creating a JMS sé,we,«g . .

iJMSSer\/er
(none) ¥

(none) x

{none) x

Java Messaging Service

Copyright © 2002 BEA Systems Inc.

JMS-14

Figure 19 : Create a JMS Server in WLS

[image: image20.jpg]@ Console
B @ JMsDomain
“d5ervers
i Clusters
ElMachines
EdNetwork Channels
B JDepInyments
Eigervices
= Eypsc
= Eums :
E connection Factories
E]Templales
EH pestination Keys
Elstores
Epistributed Cestinations
2 Elgerers
2 @ JMsServer
#pestinations
Elsession Pools
CﬁMassaging Bridge
Bl
L A
= Elsnmp
BwLec
LJv\lebLogic Tuxedo Connector

Java Messaging Service

A2 Name: jIMSQueueName

A2 JINDIName: {IMSQueueJNDIName
A?P Enable Store: {default 7
A% Template: {{nons) =1

_ Available Chosen

&% Destination Keys:

Copyright © 2002 BEA Systems Inc.

Figure 20 : Create a Queue Destination

[image: image21.jpg]Creatilég a Topic Deétination

P o ” - i s

@ EVConﬂqure a new JMSTomc

@ Console lomait 5>
2 @ JmsDomain
|

Epachines
ElNetwork Channels
ﬂDeploymems
2 Hgenices

General

= Eypsc & Name: [MSTopicNeme ; 3
= Eums
SConnectionFactories &% JNDIName: {IMSTopicJNDIName
Templates
Epestination Keys &2 Enable Store: ld_e_faylt *!
EHstores
Epjstributed Destinations AT Template: (none) ¥
B Egeners = e e >C3>

B @ JMSServer
& Epestinations |
® JusQueueName &% Destination Keys:
> E5ession Pools
2] Eijlwassagil'lg Bridge
i P
@ra
Edgnmp
EwLec

Avyailable

Java Messaging Service Copyright © 2002 BEA Systems Inc.

Figure 21 : Create a Topic Destination

2.14 Enterprise JavaBeans

Enterprise JavaBeans is a component architecture specification that defines the structure of beans, the structure of the containers in which they operate, and the methods for interaction with their clients. Infrastructure services, application server implementation, and client implementation are defined by the developer and application server vendor.

There are four types of EJBs as show in Figure 22. Each of the EJBs has a particular design approach and requirements for its construction. There are many benefits that result from having a variety of EJB types. The differences in EJB types allow an application server to optimize performance by being able to make assumptions about the state and persistence level of the component. The EJBs that have no state management can have a higher degree of pooling than EJBs that have state. There are three levels of state behavior that a component can assume : no state, not persisted, persisted.

[image: image22.jpg]Types efEJBs

=JB
Stateless
‘Sessjon

Stateful
Session

Entity

Driven

| =are maintained in memory
-conversatlonal interaction

: -represent persnsted data

Message |=asynchronous & stateless

=do not survive crashes :

smaintain state for client
=are synchronous
=do not survive crashes

an survive a crash

=consume JMS messages

= check validity of
stock symbol

= calculate billing of
phonecall

=book a flight & car
rental for travel

a

= manage a shopping

cart

=represent a player’s

statistics

=represent a stock’s

history

= store logging
messages

.

Enterprise Applications

Copyright © 2002 BEA Systems Inc.

ENTA-4

Figure 22 : Types of EJBs

Stateless session EJBs are components that implement a single-use service. That service can be invoked many times, but since the component does not maintain any state, the resulting effect is that the invocation provided a single use. In a lot of ways, session beans provide a “reusable single-use server.”
Stateful session beans are very similar to their stateless session bean counterparts. In fact, stateful session beans and stateless session beans are implemented in exactly the same manner. So, what is different about them ? Stateful session beans are designed to maintain state across multiple client invocations on behalf of the client. The stateful session bean does this by storing stateful properties in the attributes of the component itself. An EJB container is then responsible for ensuring that subsequent client invocations for the same stateful bean are routed back to the object that hosts the stateful attribures.

When we say an EJB is persistent, we mean that the data in the EJB will persist or exist whether the EJB is currently in memory or not. The persistence of an EJB can be implemented in a variety of ways. For instance, the object could be stored in a relational database, stored in a file, or placed in another form of media.

An Enterprise Application is an archive file that packages up a Web Application along with any resources it might require. Typically, an enterprise application includes a .war file, one or more support .jar files, and any Enterprise JavaBeans the application may required.

[image: image23.jpg]= To update EJB Applications from the
console:
@ Console Edit EJB Descriptor. ..
B @ staplerzDomain
® Edgervers
@ Eclusters

EMachines
Ednetwork Channels
2 Elpeployments
Ljﬂxpphcanons
Eedp
= Elyweb Applications
Eweb Senvice Components

= Note that:
> only implementation classes can be updated
> interfaces cannot be updated

Deploy this component to all of the selected targets.

Undeplpy Undeploy this component from all targets.

Enterprise Applications Copyright © 2002 BEA Systems Inc. ENTA-13

Figure 23 : EJB Redeployment

Once an EJB has been successfully deployed, if you make a change to the deployed EJB, you must redeploy the EJB for the changes to take effect. From the WebLogic Server Administration Console update EJB as follows :

1. Choose EJB from the Deployments node in the left pane of the Console.

2. Click the EJB you want to update from the list.

3. Choose the Configuration tab from the dialog in the right pane and update the EJB by checking the deployed box.

You can update only the EJB implementation class, not the public interfaces or public support classes. If you change the contents of a compiled ejb.jar file in applications (by repackaging, recompiling, or copying over the existing ejb.jar), WebLogic Server automatically attempts to redeploy the ejb.jar file using the automatic deployment feature.

3. 心得

個人自進入中華電信研究所以來，即從事Application Server端的程式開發，從第二代公用電話客戶服務系統(IPAS 2)至目前開發中的eLEAMIS線路供裝維運管理系統，個人深感一個好的Application Server對系統的重要性；一個好的Application Server除了在開發階段能幫助程式設計者更快速的完成程式，更須要有良好的資源管理、穩定度、容錯度及記憶體管理等特性，才能造就一個快速且穩定的系統。

BEA WebLogic Server提供許多種方便程式開發人員使用的工具，包括WebLogic Builder、EJBGen、Web services tools等，程式設計者可以專注於企邏輯的設計，而將其它如分散式通訊問題、安全問題、永續性問題、訊息傳遞問題等相關服務性問題交由WebLogic Server處理。

在這幾年的工作經驗中，個人深感程式開發必須朝向元件化的分散式運算發展，利用Java語言跨平台的特性，達成撰寫一次，各處執行的效果；並將規格與實作分離，減輕程式的維護成本、增加程式的可重用性；再者，由於目前企業應用系統所含括的技術相當多樣，沒有人可以完全熟悉各種不同的技術，而這些技術大多都可以由Application Server提供，程式開發人員只須對各項技術有觀念上的了解，並懂得如可使用Application Server所提供之API即可，將底層較複雜的實作部份交由Application Server處理，如此程式設計人員才能專注心力在企業邏輯的設計與實作上，開發出執行效能佳且兼具穩定性及擴充性的企業應用系統。

4. 建議

Application Server所牽涉到的技術相當多樣，要深入學習任一項Application Server必須先對J2EE架構中相關技術有所了解，才能透澈的了解Application Server所提供的各項功能，進而發揮其最大效益。

5. 其他相關事項

參考網頁：

․http://edocs.bea.com/

․http://www.appfluent.com/

․http://industry.java.sun.com/products/jdbc/drivers

․http://www.spec.org/osg/AppServer

․http://ecperf.theserversite.com/

․http://theserversite.com/

․http://learnweblogic.com/

․http://dev2dev.bea.com/resourcelibrary

․http://personalpages.tds.net/~paulf

II

