報告內容

- 一、國外公務之內容與過程
 - (一) 公務任務
 - (二) 內容與過程
- 二、國外公務之心得與感想
 - (一) DIASYS NETMATION 控制系統介紹
 - (二) 各控制站之功能
 - 1. MPS
 - 2. OPS
 - 3. EMS
 - (三) DIASYS NETMATION 控制系統的備份
- 三、結語

一、 國外公務之內容與過程

(一) 公務任務:

南部複循環四號機分散控制及資料蒐集系統設計 運轉及維護實習

(二) 內容與過程

1. 前言:

南部複循環四號氣渦輪機、汽機及發電機等發電設備係採用單軸式之複循環機組;該機組之控制系統為三菱DIASYS(MITSUBISHI DIGITAL INTELLIGENT AUTOMATION SYSTEM) Netmation 分散控制系統,其設計安裝、運轉、維護等方面皆不同於以往,此次承蒙各級長官推薦前往原製造廠實習,俾使對機組現場安裝、安裝完成後之機組運轉及日後維護有所助益。

2. 實習日期及前往機構:

起訖日	機構名稱
91年8月20日	赴日本神戶三菱電機公司
91年8月21日至9月12日	神戶三菱實習分散控制及資料 蒐集系統
91年9月13日至10月2日	東京三菱實習分散控制及資料蒐集系統设計、運轉及維護
91年10月3日	返回高雄

二、 國外公務之心得與感想

(一) DIASYS NETMATION 控制系統介紹

1. 系統架構

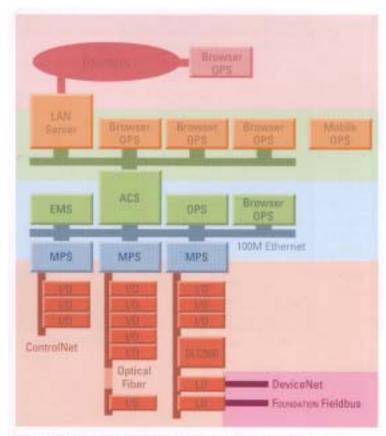


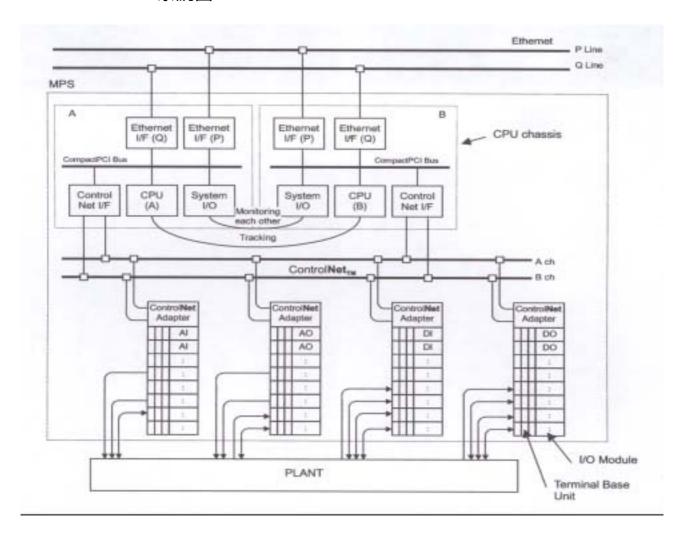
Fig. 1: Outline of System Component Configuration

DIASYS NETMATION 控制系統是基於 Internet 及 Intranets 網路、所發展之高可靠度、容易操作、方便維護之分散控制資料蒐集系統。其構成要素如上圖所示,南部複循環四號機之連接圖如下二頁所示。其組成要素如下:

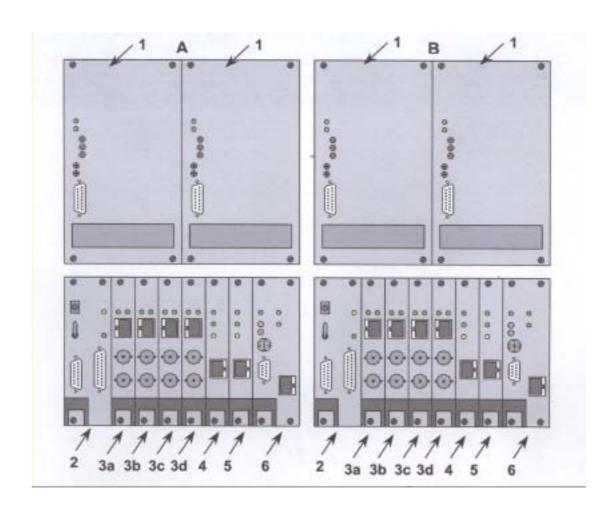
(a) MPS (Multiple Process Station)

MPS 控制站主要是執行整部機組之自動控制及 I/O 輸出、
輸入處理,由於具有相當強之算術、邏輯運算能力,故適合

處理需高速運算之控制單元,如 Turbine governor Control 汽機調速機、鍋爐自動控制、啟動停機程序等控制。


- (b) OPS(Operator Station)
 OPS 人機界面監視及操作系統,採用 Windows NT 4.0 PC 為操作平台,操作人員很容易操作電廠各項功能而不需涉及
 MHI(Mitsubishi Heavy Industry 三菱重工)之各項技術。
- (c) EMS(Engineering And Maintenance Station)
 EMS 工程維護站,使用 DIASYS-IDOL**軟體來維護各控制系統。包含設計修改 MPS 之各項控制邏輯(LOGIC)圖,OPS 內操作圖(GRAPHIC)之設計修改、曲線圖(TREND)之設計、警報(ALARM)之規劃、迴路控制器(CONTROL LOOP PLATE)之設計、ACS、HSR 之規劃等。
- (d) ACS(Accessory Station)

ACS 輔助站主要是儲存及處理電廠龐大的資料。包含事件收集(Event Trace Collection)、警報/事件印表(Alarm/Event Printing)、中長期曲線收集(Middle/Long Term Trend Collection)、運轉記錄收集印表(Report Collection,printing)、跳機時記錄收集印表(Post Trip Log Collection,Printing)、事故順序之收集印表(Sequence Event Log Collation,Printing)、印表機處理(Printer Manegement)等。


(二) 各控制站之功能

1. MPS

a. 系統圖

上圖為 MPS 位於 Ethernet(P,Q, 2 Channel)網路上之架構、其包含了 CPU Chassis 內之 CPU Card、System I/O Card、Ethernet Card、Controlnet Interface card、Compact PCI Bus,及ControlnetBus(A,B,2 Channel), Controlnet Adapter, I/O Module等。下圖為 CPU Chassis 之構造圖。

編號	內容
1	Power Supply Module 電源供應器
2	System I/O Card 系統控制卡
3a	Controlnet Interface card 輸入/輸出介面卡
3b	Controlnet Interface card 輸入/輸出介面卡
3c	Controlnet Interface card 輸入/輸出介面卡
3d	Controlnet Interface card 輸入/輸出介面卡
4	Ethernet Interface Card 網路卡
5	Ethernet Interface Card 網路卡
6	CPU Card 中央處理單元

b. 組成要素

(1) CPU Card

有兩組 CPU 執行控制運算,一組 On Line、一組為備用,

其程式存放於 Compact Flash ROM 中,若系統停電 CPU中程式仍能保存。

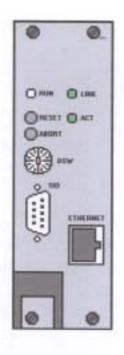


Fig. 1.3-1 CPU card

Table 1.3-1 CPU card status

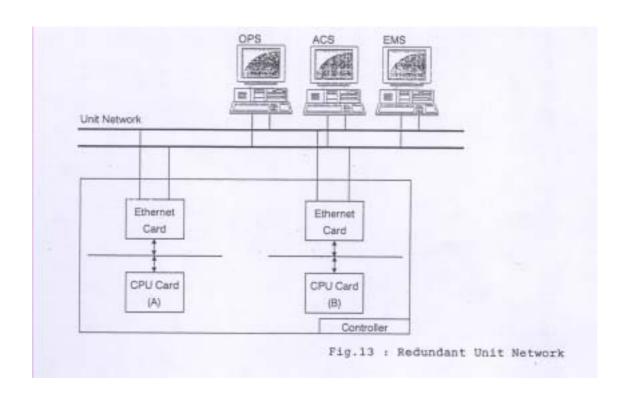
LED	Color	Display	Meaning
	OFF	+	Power supply is Off
	Yellow	Steady	CPU is resetting
RUN	Red	Blink	Writing the dump file of the memory (use for error analysis) to the compact flash when any failure occurred. Shutting down
	Red	Steady	WDT error (Time Out)occurred
	Green	Blink	Completed to shut down
	Green	Steady	Normal
LINK	Green	Steady	Ethernet link for the tracking is connected
ACT	Green	Blink	Ethernet data for the tracking is being sent/received

(2) System I/O Card

系統控制卡主要監視 CPU 功能及運轉狀態,當 CPU 因為硬體或軟體錯誤而失效時, System I/O Card 將會執行 CPU 轉換,使另一組 CPU 接管控制。

Fig. 1.3-2 System I/O card

Table 1.3-2 System I/O card status


LED	Color	Display	Meaning	
Any LED	OFF	-	H/W Abnormality of System I/O card	
CONT	Green	Steady	CPU:In Control	
STBY	Yellow	Steady	CPU:Standby	
INT	Red	Steady	CPU:Initializing	
NORMAL	Green	Steady	CPU:Normal	
ABNORMAL	Yellow	Steady	CPU:Minor fault	
FAILURE	Red	Steady	CPU:Major fault	

(3) Ethernet Card

網路卡主要將 MPS 連接至 Ethernet 網路(共有 2 Channel ,P Channel 及 Q Channel),以便與 OPS、ACS 及 EMS 連接。
(4) Unit Network

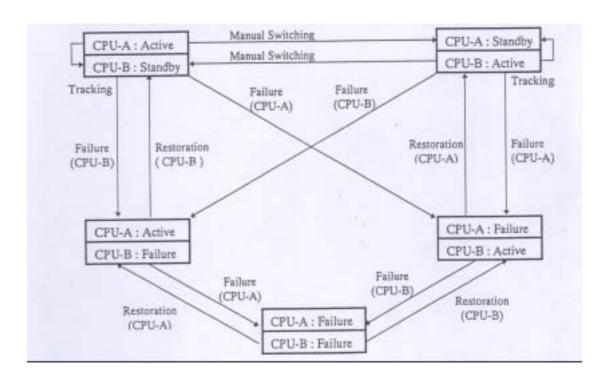
為 Ethernet 網路,其為互聯(Redundant)網路,共有 2 Channel, P Channel 及 Q Channel。此網路連接所有與 MPS 通訊之控制設備,包含 ACS、EMS、OPS等。當 其中之一失效時,另一 Channel 仍能有效工作。

下圖為其連接圖

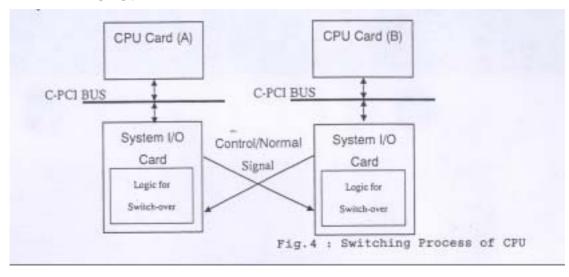
(5) Controlnet Card

輸入/輸出介面卡主要功能在於連接 CPU 與 I/O Module 之通訊,

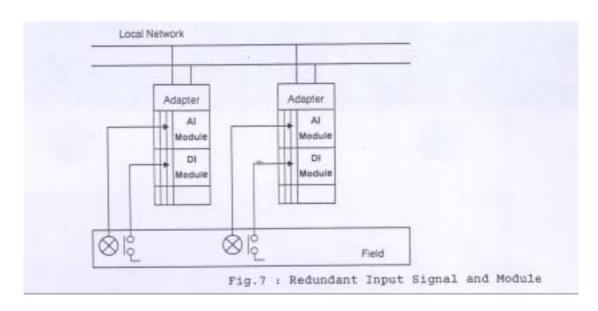
其網路為 Controlnet Bus(Allen Bradley 公司所發展,共有2


Channel, A Channel 及 B Channel)。

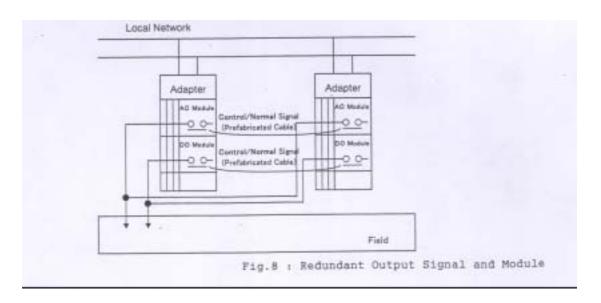
- (6) Local Network
 由 Allen Bradley 公司所發展之互聯(Redundant)式網路
 Controlnet Bus, 共有 2 Channel, A Channel 及 B Channel。
 其作用在於連接 CPU 與 I/O Module 之通訊。當其中之
 一失效時,另一 Channel 仍能有效工作。
- (7) Controlnet Adapter Card 網路連接卡,其作用為連接 I/O 模組至 Controlnet Bus 之通訊
- (8) I/O Module 輸入輸出模組、包含下列各項
 - Analog Input(AI) Module 類比輸入
 - Analog Output(AO) Module 類比輸出
 - Digital Input(DI) Module 數位輸入
 - Digital Output(DO) Module 數位輸出
 - Servo Module 伺服模組
 - Electrical Over Speed trip(EOST) Module 超速跳脫
 模組
 - Interlock (IL) Module 連鎖保護模組
- c. MPS 系統可靠度
 - (1)CPU 控制的轉換


兩組 CPU 會互相監視另一組之狀態,以確保系統之可

靠度。備用之 CPU 會週期性偵查控制中之 CPU,若有任何錯誤時會接管控制權。下圖為其轉換說明

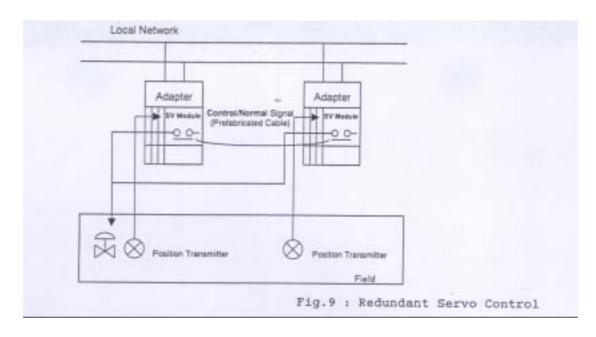

(2) 轉換控制之進行

CPU 轉換是由 System I/O Card 完成,當主控 CPU 失效時, System I/O Card 之轉換邏輯將控制權轉換至另一組CPU.

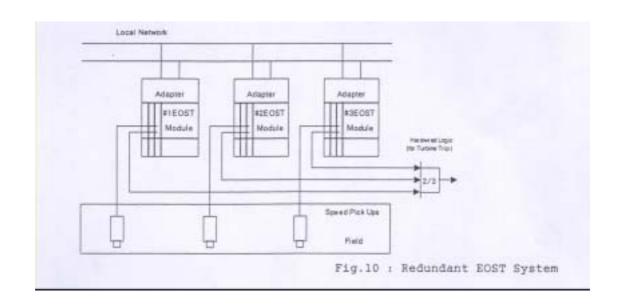


(3) Redundant Input 互聯輸入

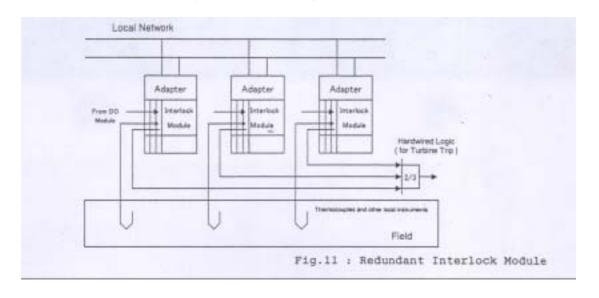
如果現場有雙重輸入訊號,則每一輸入訊號會送入個別的 I/O 模組,如下圖所示


(4) Redundant Output 互聯輸出

對於重要設備之輸出訊號,會將互聯之輸出模組以線路連接,經由此線路、模組可互相監視控制訊號來完成轉換,決定由那一個模組輸出控制訊號。


(5) Redundant Servo Control 互聯伺服控制

對於氣渦輪機、汽輪機、蒸汽旁路系統之控制,伺服 控制是非常重要的設備,故需使用互聯之伺服控制模 組。會將互聯之伺服控制模組以線路連接,經由此線 路、模組可互相監視控制訊號來完成轉換,決定由那 一個模組輸出控制訊號。



(6) Redundant Electrical Over Speed Trip(EOST) System 互 聯之超速跳脫系統

三組速度感應器分別接至三個超速跳脫模組,超速跳脫模組的輸出接至三選二之跳脫邏輯控制系統
(Two-out-of-three Hardwired Logic),當其速度有兩個或兩個以上超過預設值時,將渦輪機跳脫。

(7) Redundant Interlock System 互聯之連鎖保護系統 連鎖保護系統用於保護渦輪機,三組輸入訊號分別接 至三個連鎖保護模組,連鎖保護模組輸出接至三選二 隻跳脫邏輯以跳脫渦輪機。

- d. Trouble Shooting 故障處理
 - (1) CPU 運轉模式如下列各項

- Control:控制模式,假使 CPU 有微小故障(Minor Fault),系統仍會將備用 CPU 轉換為控制模式 CPU(當 Standby CPU 故障層級小於 Control CPU 時)
- Standby:備用模式
- Initialization : 初始化模式,此模式發生於 CPU 被置於 On Line 運轉之初,而尚未完成 On Line 模式 時之狀態
- Offline:離線模式,不具備輸入輸出之能力
- Shutdown:停機模式,此時 CPU 之電源供應器已經被關閉
- Major Fault:主要故障, CPU 故障程度需停止邏輯運算
- Minor Fault:微小故障, CPU 故障程度不需停止 邏輯運算
- (2) CPU 發生故障或是手動切換運轉模式之路徑及燈號之顯示,如圖 Fig1.3-1 所示

Redundant CPU 之各種狀態總結,如表 Table 1.3-1 所示

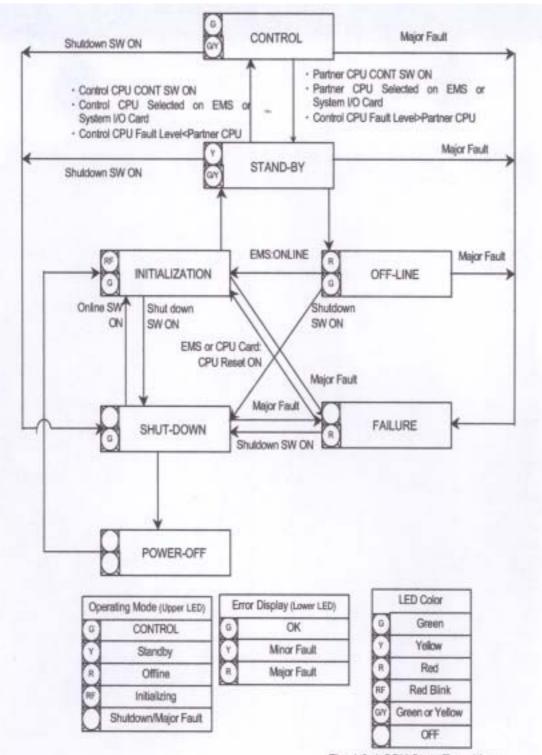
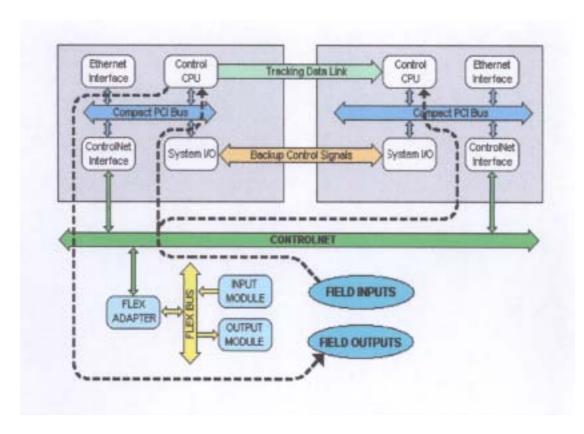



Fig. 1.3-1 CPU State Transitions

Table 1.3-1 Redundant CPU States Summary

Contin	Control Status	Status of the Own CPU	9	I/O Processing	sing	Output	put	Tracking Communication	Processing	Loading	2011	Communication
CPU	Partner		≥ □	AO	8	AO DO	8				Rece	Transmit
Control	Standby	Gets Input from I/O and Ethernet, Execute control processing and then sends the results to I/O and Ethernet.	0	0	0	0	0	Transmit	Control Processing	Only Inline Loop Loading is Possible	0	0
	Faulted	No Major Fault occurred on the Control CPU.						Receive only during Initialization of partner CPU				
Standby	Control	Update partner CPU with latest Output values via the tracking data link.	0	×	×	×	×	Receive	Tracking Data Processing	Possible	0	System Status and Trend Status Only
	Faulted	This combination (Standby/Faulted) cannot exist	cann	ot exis								
Faulted	Control	(1) H/W and/or S/W faults preventing the computer from normal functioning or (2) Initialization after a fault reset	×	×	×	×	×	Receive only during Initialization	Initialization Processing	Only Inline Loop Loading is Possible	×	Same as the standby mode in the case of pile failure factors other than interruption
	Standby	This combination (Standby/Faulted) cannot exist	canno	ot exis	1		1					
	Faulted		×	×	×	×	×	1	1	Only Inline Loop Loading is Possible	×	Same as the standby mode in the case of pile failure factors other than internation

- (3) I/O Handling in the Backup System:輸入輸出處理
 於 Diasys Netmation 中雙組 CPU 經由 Controlnet Bus 連接至 I/O 模組,以下說明 Control CPU 及 Standby CPU
 如何更新輸出及讀入輸入訊號
 - Outputs:只有 Control CPU 可以更新輸出
 - Inputs: Control CPU 及 Standby CPU 均可讀入輸入 下圖表示其資料之流向

(4) Trouble Shooting Procedure 故障處理程序

A. 當 MPS 系統故障時,首先於 OPS 查看 System Alarm 代碼,其故障內容如下表所示,其解決方法依照技術手冊 TAS71-M001E 所列方案解決。

Table 2.1-1 MPS System Alarm List for CPU-A

CODE	ALARM MESSAGE
0005	[CPU-A] ABNORMAL(switch to CPU-B)
0006	[CPU-A] ABNORMAL
0091	[CPU-A] B-CPU FAILURE
0100	[CPU-A] FAILURE - INTO : DIVIED BY ZERO
0101	[CPU-A] FAILURE - INT1 : ZERO ADDRESS ACCESS
0103	[CPU-A] FAILURE - INT3 : BREAK POINT
0104	[CPU-A] FAILURE - INT4 : OVER FLOW
0105	[CPU-A] FAILURE - INT5 : BOUND RANGE EXCEEDED
0106	[CPU-A] FAILURE - INT6 : INVALID OPCODE
0107	[CPU-A] FAILURE - INT7 : DEVICE NOT AVAILABLE
0108	[CPU-A] FAILURE - INT8 : DOUBLE FAULT
0109	[CPU-A] FAILURE - INT9 : COPROCESSOR SEGMENT
	OVER RUN -
0110	[CPU-A] FAILURE - INT10 : INVALID TSS
0111	[CPU-A] FAILURE - INT11 : SEGMENT NOT PRESENT
0112	[CPU-A] FAILURE - INT12 : STACK SEGMENT FAULT
0113	[CPU-A] FAILURE - INT13 : GENERAL PROTECTION
0114	[CPU-A] FAILURE - INT14 : PAGE FAULT
0116	[CPU-A] FAILURE - INT16 : FLOATING-POINT ERROR
0117	[CPU-A] FAILURE - INT17 : ALIGMENT CHECK
0118	[CPU-A] FAILURE - INT18 : MACHINE CHECK
0119	[CPU-A] FAILURE - INT19 : STREAMING SIMD
	EXTENSIONS
0121	[CPU-A] FAILURE - BROWNOUT OF POWER SUPPLY FOR
	FAILURE-CPU CHASSIS
0122	[CPU-A] FAILURE - WATCH DOG TIMER ERROR
0124	[CPU-A] FAILURE - DISCONNECT CONNECTOR FOR
VON LOSS.	SYSTEM I/O MODULE
0125	[CPU-A] ABNORMAL - SYSTEM TRANSFER ERROR
0126	[CPU-A] FAILURE - COMPACT PCI BUS ERROR
0127	[CPU-A] FAILURE - SYSTEM I/O CLOCK ERROR
0131	[CPU-A] ABNORMAL - BROWNOUT OF BATTERY FOR
	CPU MODULE
0132	[CPU-A] ABNORMAL - HIGH TEMPERATURE OF CPU
0133	[CPU-A] FAILURE - 2BIT ERROR OF SDRAM
0141	[CPU-A] ABNORMAL - ControlNet _{TM} I/F(1)
0142	[CPU-A] ABNORMAL - ControlNet _{TM} I/F(2)
0143	[CPU-A] ABNORMAL - ControlNet _{ru} I/F(3)
0144	[CPU-A] ABNORMAL - ControlNet _{TM} I/F(4)
0145	[CPU-A] ABNORMAL - ControlNet _{TM} 1/F(5)
0201	[CPU-A] ABNORMAL - SHEET DATA ERROR
0202	[CPU-A] ABNORMAL - SHEET DATA CONVERSION SIZE
25000	OVER
0203	[CPU-A] ABNORMAL - SHEET DATA MISMATCH
0204	[CPU-A] ABNORMAL - SHEET CALCULATION ERROR
0205	[CPU-A] ABNORMAL - DATA INSERT MODE
0206	[CPU-A] ABNORMAL - MANUAL SET MODE
0207	[CPU-A] ATTENTION - INLOADED SHEET EXISTS
0211	[CPU-A] ABNORMAL - TRACKING DATA TRANSMITTING
0212	[CPU-A] FAILURE - TRACKING DATA RECEIVING

CODE	ALARM MESSAGE
0221	[CPU-A] FAILURE - TRANSMITTING OF BOTH CHANNEL OF ETHERNET
0222	[CPU-A] ABNORMAL - TRANSMITTING OF ETHERNET (ch.P)
0223	[CPU-A] ABNORMAL - TRANSMITTING OF ETHERNET (ch.Q)
0224	[CPU-A] FAILURE - ETHERNET COMMUNICATION STOPPED (ch.P)
0225	[CPU-A] FAILURE - ETHERNET COMMUNICATION STOPPED (ch.Q)
0231	[CPU-A] FAILURE - SOFTWARE WDT ERROR
0234	[CPU-A] ABNORMAL - SHORTAGE OF MEMORY FOR MINI-MACHINE
0241	[CPU-A] ABNORMAL - SHORTAGE OF MEMORY FOR DTF
0242	[CPU-A] ABNORMAL - RECEIVING OF INTER- COMMUNICATION
0251	[CPU-A] ABNORMAL - SHORTAGE OF MEMORY FOR ALARM QUEUEING
0261	[CPU-A] FAILURE - INITIALIZATION OF SYSTEM DEFINITION
0262	[CPU-A] FAILURE - COMMUNICATION DEFINITION
0263	[CPU-A] FAILURE - I/O MODULE DEFINITION
0264	[CPU-A] FAILURE - RAS DEFINITION
0280	[CPU-A] FAILURE - GLOBAL DATA AREA ERROR
0282	[CPU-A] FAILURE - HARDWARE CONFIGURATION
0283	[CPU-A] FAILURE - I/O ASSIGMENT
0284	[CPU-A] FAILURE - SHEET LIST
0901	[CPU-A] FAILURE - ControlNet _{TM} (1) BOTH CHANNEL
0902	[CPU-A] ABNORMAL - ControlNet _{TM} (1) ch.A
0903	[CPU-A] ABNORMAL - ControlNet _{TM} (1) ch.B
0904	[CPU-A] FAILURE - ControlNet _{TM} (2) BOTH CHANNEL
0905	[CPU-A] ABNORMAL - ControlNet _{TM} (1) ch.A
0906	[CPU-A] ABNORMAL - ControlNet _{TM} (1) ch.B
0907	[CPU-A] FAILURE - ControlNetm (3) BOTH CHANNEL
0908	[CPU-A] ABNORMAL - ControlNet _{TM} (3) ch.A
0909	[CPU-A] ABNORMAL - ControlNet _{TM} (3) ch.B
0910	[CPU-A] FAILURE - ControlNetm (4) BOTH CHANNEL
0911	[CPU-A] ABNORMAL - ControlNet _{TM} (4) ch.A
0912	[CPU-A] ABNORMAL - ControlNet _{TM} (4) ch.B
n+0	[CPU-A] Adapter Abnormal ***-CNET(x)ADPT(y)
n+1	[CPU-A] Adapter CH-A Abnormal ***-CNET(x)ADPT(y)
n+2	[CPU-A] Adapter CH-B Abnormal ***-CNET(x)ADPT(y)
m	[CPU-A] IO Module Abnormal ***-CNET(x)ADPT(y)BLK(z)

B. 當 OPS 沒有出示 System Alarm 時,則依下列方法重置(Reset)CPU

● 於 CPU 面板前按下 ABORT 開關

- 確認燈號"RUN"由閃爍至穩定
- 於 System I/O Card 面板前拉下開關至 Shut Down 位置
- 關閉 CPU Chassis 電源供應器之電源
- 於 System I/O Card 面板前拉上開關至 On Line 位置
- 打開 CPU Chassis 電源供應器之電源
- C. 以上之處理若無法恢復正常,則視需要更換 CPU、
 System I/Q Controlnet interface Ethernet interface Power supply 等卡片,其步驟如下
 - 於 CPU 面板前按下 ABORT 開關
 - 確認燈號"RUN"由閃爍至穩定
 - 於 System I/O Card 面板前拉下開關至 Shut Down位置
 - 關閉 CPU Chassis 電源供應器之電源
 - 更換適當之卡片
 - 於 System I/O Card 面板前拉上開關至 On Line 位置
 - 打開 CPU Chassis 電源供應器之電源

2. OPS(Operator Station)操作站

OPS 人機界面監視及操作系統,採用 Windows NT 4.0 PC 為操作平台,操作人員很容易操作電廠各項功能而不需涉及MHI(Mitsubishi Heavy Industry 三菱重工)之各項技術。

a. 硬體架構

● CPU:需高於 Intel Pentium III 866 MHz

● Memory:需高於 512MB

● Harddisk:需高於 20GB

b. 軟體需求

● 作業系統: Microsoft windows NT4.0 Workstation

● 備份軟體: Power Quest 公司 Drive image4.0

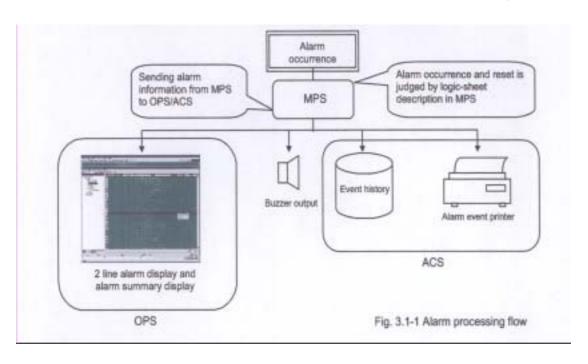
● 應用軟體:Adobe 公司 Acrobat Reader4.0

● 主要程式: MHI 三菱重工 WorkSpaceManager
如果 OPS 操作站也要執行 EMS Client Terminal(工程維護客戶端軟體)程式,需加裝下列軟體

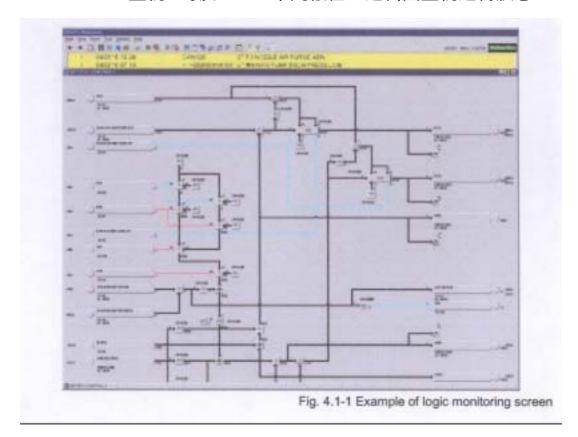
- Microsoft Office 2000 標準版
- Microsoft Visio 2000 標準版
- MHI 三菱重工 ORCA Client 資料庫軟體
- c. OPS 各站內定於 Ethernet 網址為 192.168.x.101~140

其中 x=1 代表 P Channel, x=2 代表 Q Channel

d. OPS 之各項功能

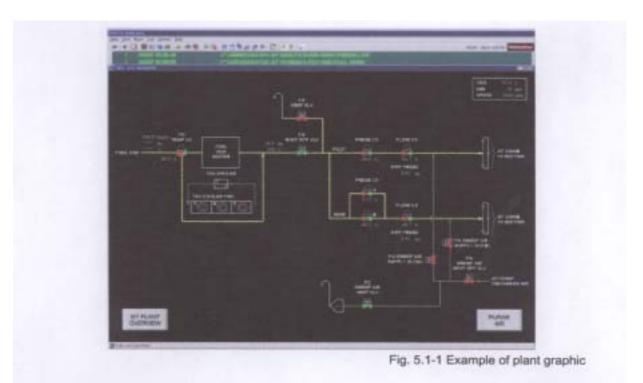

OPS 主要以 MHI(三菱重工)所發展之 Work Space

Manager(WSManager:WSM)為人機界面操作軟體,於此

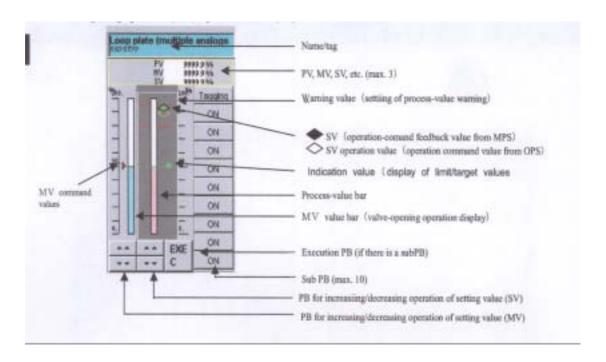

軟體下監視及操作電廠運轉之各項功能。其主要功能如
下:

(1) Alarm Processiong 警報處理

主要是收集 MPS 內邏輯(Logic 圖)所定義之各項 Alarm, 每一個 MPS 最多可定義 18000 點,並可同時處理最近 200 點警報。其可以每秒更新一次警報狀態,並利用顏色及是 否閃爍來代表警報的出現、消失、確認、重置等狀態。

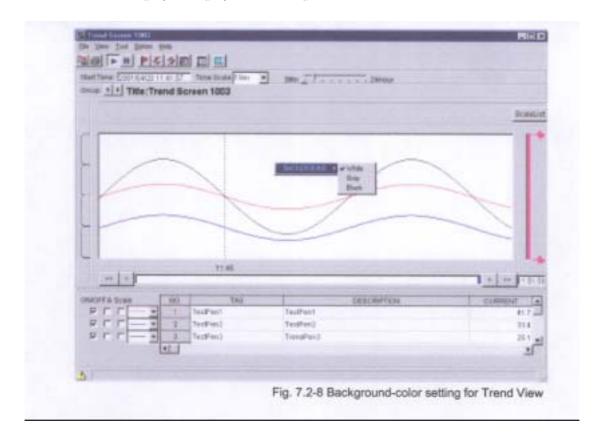


- (2) Usage of Logic Monitoring 邏輯圖的監視及使用
 於 EMS 中所設計之 Logic 會傳送至 MPS 當作基本運轉
 法則,也會傳送至 OPS 當作監視、參數微調、手動強制
 設定。
 - 監視: 可於 WSM 中開啟任一邏輯圖監視運轉狀態

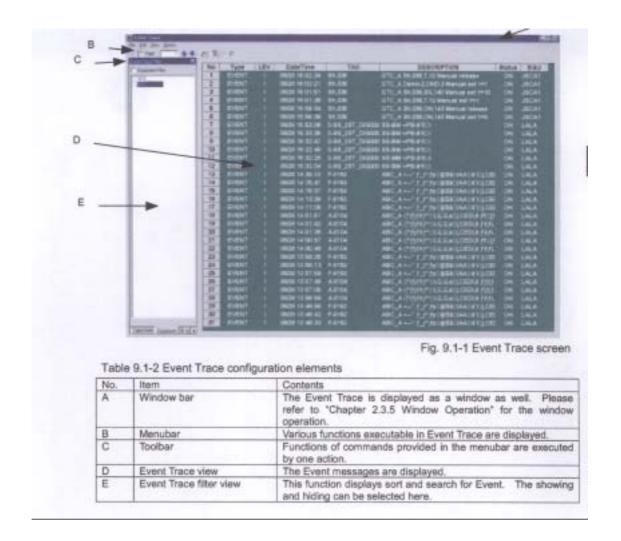


- Parameter Tuning 參數微調:可於邏輯圖中強制更改 某一元件之參數設定,例如可變更某一 PI(比例積 分器)之時間參數值。
- Manual Setting 手動強制設定:可於邏輯圖中強制更 改某一元件之輸出設定

- (3) Usage of Plant Graphic 電廠流程圖操作 於 EMS 中所設計之 Plant Graphic 會傳送至 OPS 當作操作人員之操作流程圖,其具有下列特性
 - 每秒鐘更新一次圖形元件之運轉狀態
 - 以顏色變化及閃爍來表示各元件之狀態
 - 具有數字之元件,可拖曳至曲線功能中
 - 可於 Graphic 中打開迴路控制器(CONTROL LOOPPLATE)來操作閥、泵、風扇等控制元件
 - 可於 Graphic 中打開 Logic 圖來執行 Logic 中之監視、參數微調、手動強制設定
 - 可變更圖形大小及任意捲動 Graph


(4) Usage of Loop Plate 迴路控制器之使用
於 EMS 中所設計之迴路控制器(Loop Plate) 會傳送至
MPS 當作現場元件控制,也會傳送至 OPS 當作人機介
面圖形,共可分為六大類,下圖為其中之一種

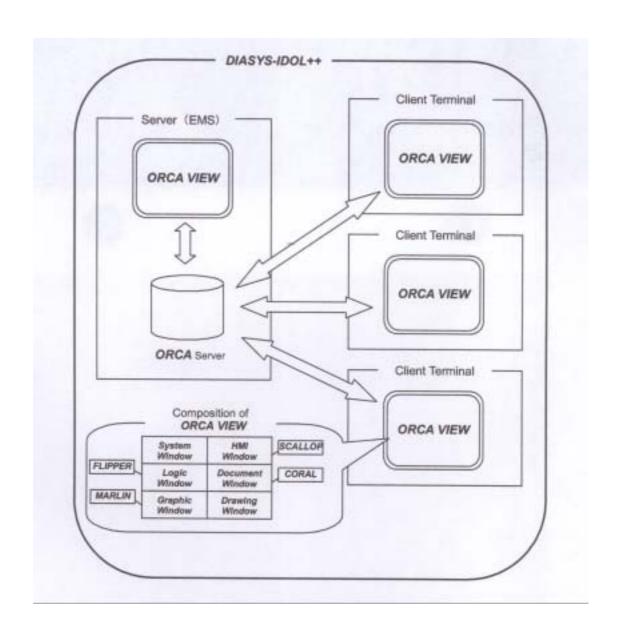
(5) Trend 曲線圖


於 WSM 中可以很快的規劃曲線圖,利用 Grapgic 中之數字元件,將其拖曳至打開之曲線圖中即可。其具有下列特性

- 每張圖可有 16 筆資料
- 最多可有 1000 張圖
- Collection cycle: 最近模式 1~180 秒。
- Collection cycle: 歷史模式 1 秒、5 秒、15 秒、30

- Usage of Event Trace 事件追蹤 主要是收集 MPS 內 Logic 所定義的各項 Event, Event 可分為下列各項
 - Logic 中的 Alarm,Event
 - DIASYS Netmation 的 SYSTEM ALARM
 - Logic 中的參數微調、手動強制設定
 - Loop Plate 中的增加、減少、ON/OFF 操作

下圖為其圖例

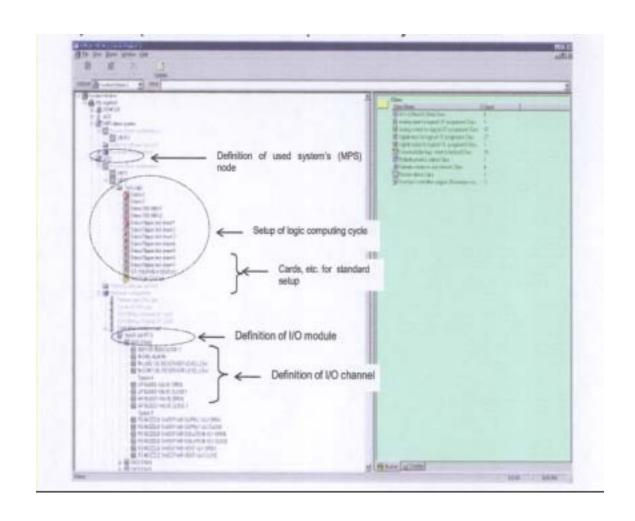

3. EMS(Engineering and Maintenance Station)工程維護站
EMS 工程維護站,使用 DIASYS-IDOL**軟體來維護各控制
系統。包含設計修改 MPS 之各項控制邏輯(LOGIC)圖,OPS
內操作圖(GRAPHIC)之設計修改、警報(ALARM)之規劃、
事件(Event)之規劃、迴路控制器(CONTROL LOOP PLATE)
之設計、ACS 、MPS 硬體之規劃等。

a. 硬體架構

● CPU:需高於 Intel Pentium III 866 MHz

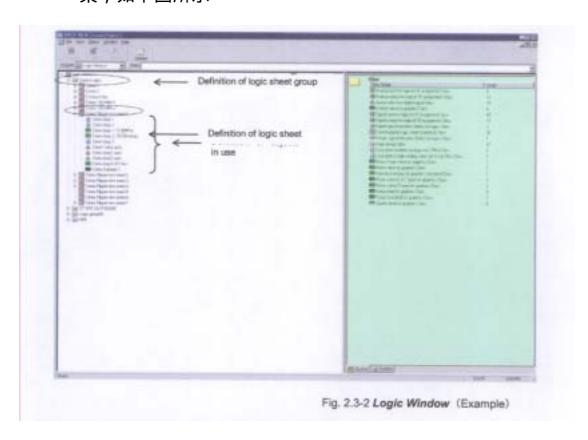
- Memory:需高於 512MB
- Harddisk:需高於 20GB
- Communication: 100BaseTx2Ch
- b. 軟體需求:DIASYS-IDOL **整合了下列各項軟體
 - Microsoft Windows NT4.0 Workstation
 - Adobe Acrobat4.0
 - Power Quest Drive Image4.0
 - Oracle 8.0.5
 - Microsoft Office 2000
 - Microsoft Visio 2000
 - MHI ORCA Server
 - MHI ORCA Client
- c. DIASYS-IDOL++基本架構
 - ORACLE 資料庫為主體之 ORCA Server 伺服器
 - ORCA Client Terminal 客戶端
 - 人機界面軟體 ORCA View,包含了六大功能視窗
 - System Window
 - HMI Window
 - Logic Window
 - Graphic Window
 - Document Window
 - Drawing Window

下圖為其基本架構


d. EMS 中 ORCA VIEW 六大功能

(1) System window

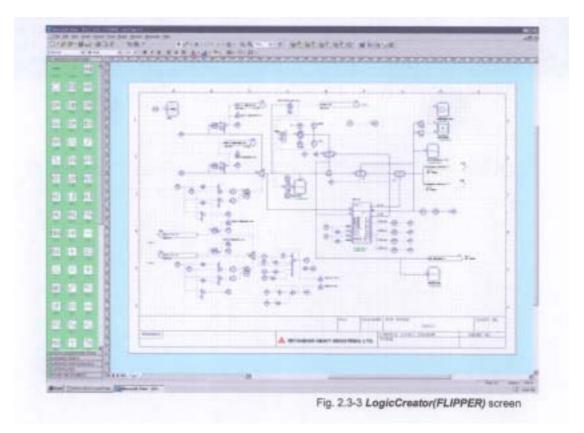
System window 功能主要是對連接至 Ethernet 網路上所有 MPS、OPS、ACS 控制站做定義及規劃。其詳細功能如 下


● 定義所有 MPS、OPS、ACS 控制站之基本資訊,包含 主機名稱、控制站元件、通信資訊等

- 定義 MPS 內 I/O 模組及 I/O Channel
- 將 Logic Window 產生之 Logic Sheet 做 Lay out 規劃,以便可以傳送至 MPS
- 規劃及定義 OPS、ACS
- 將硬體規格及 Logic Sheet 傳送至 MPS
- 操作 MPS 之運轉狀態
- 將功能及資訊傳送至 OPS
- 將功能及資訊傳送至 ACS

(2) Logic window

主要功用在於產生 Logic Sheet, Logic window 中是以層狀目錄來顯示 Logic Sheet 結構,每張 Logic 就是一個檔案,如下圖所示



Logic Window 之功能如下

- 畫出基本邏輯圖
- 於邏輯圖中貼上邏輯元件並定義其屬性(property)
- 與 OPS 元件連結
- Logic Build 可將 Logic Sheet 轉成程式語言,以便將來可傳送至 MPS

於 Logic Window 目錄某張 Logic 圖中按右鍵、按 Open,

則呼叫出 LogicCreator(Flipper)程式來處理 Logic Sheet 所有繪圖功能。其詳細規格於技術手冊 TAS71-U004E 中。

(3) Graphic Window

主要功用在於產生 Plant Graphic 電廠流程圖, Graphic Window 中是以層狀目錄來顯示 Plant Graphic 結構,每張 Graphic 就是一個檔案,其主要功能如下

- 畫流程圖
- 貼上 OPS 元件並定義其屬性(property)
- 貼上 Loop Plate 元件並定義其屬性(property)
- 貼上螢幕發展元件並定義其屬性(property)

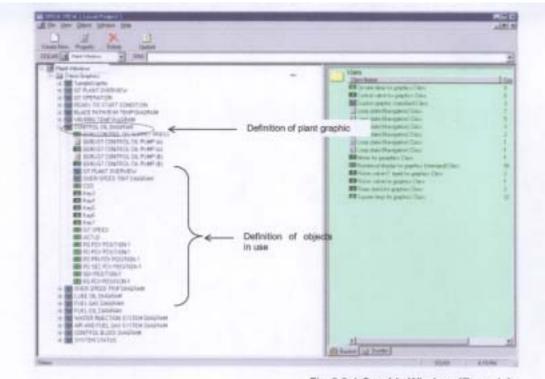
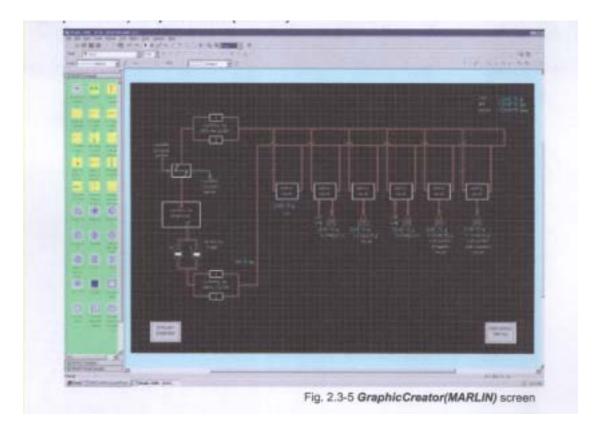
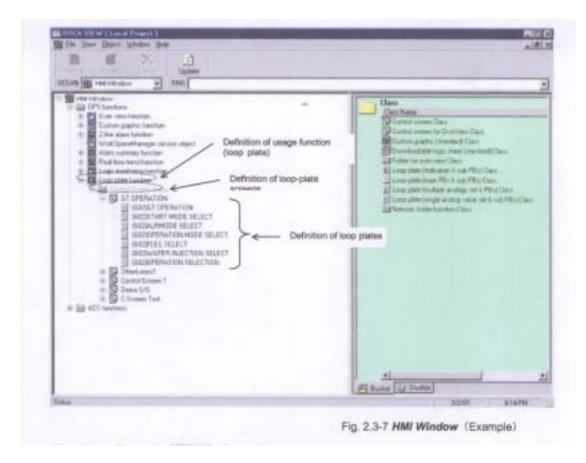



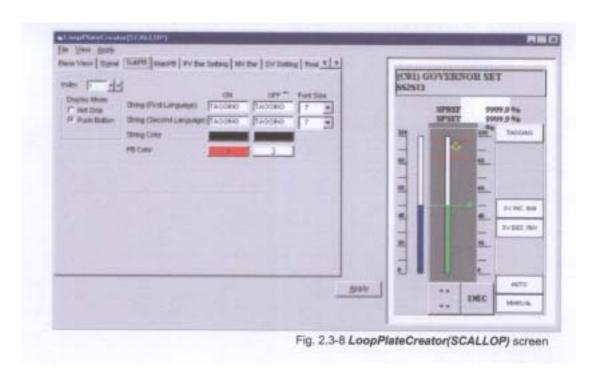
Fig. 2.3-4 Graphic Window (Example)

於 Graphic window 目錄某張 Graphic 圖中按右鍵、按 Open,則呼叫出 GraphicCreator (Marlin)程式來處理

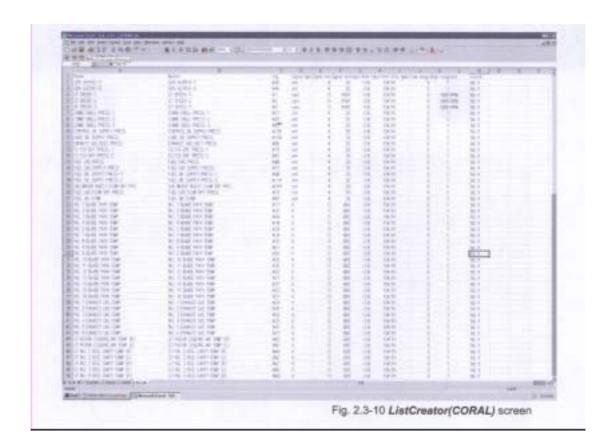

Graphic 所有繪圖功能。其詳細規格於技術手冊 TAS71-U0003E 中。

(4) HMI Window

HMI Window 主要功能在於設定 ACS 及 OPS 各項功能,


以及設計 Loop Plate 控制器。功能如下

- 規劃選擇 OPS 中所要的功能
- 設定 OPS 中 OS Explorer 的功能
- 設計 Loop Plate
- 規劃選擇 ACS 中所要的功能


於 HMI Window 中 Control Screen Group 中開啟迴路控

制器(Loop Plate)會呼叫 LoopPlate Creator(Scallop)程式來設計規劃迴路控制器,其詳細規格於技術手冊 TAS71-U0007E 中。如下圖所示

(5) Document Window

Document Window 主要功能在於擷取 Objectdatabase (ORCA)資料庫中之物件,產生各種所需要的 List 檔案 於 Document Window 中開啟列表檔,會呼叫 ListCreator (Coral)程式來設計規劃列表檔。其詳細規格於技術手冊 TAS71-U0005E 中。如下圖所示

(6) Drawing Window

主要是將下列格式檔案轉換成電子檔(.pdf 格式檔)

- LogicCreator(Flipper)程式所產生的 Logic Sheet 邏輯 圖檔案
- GraphicCreator (Marlin)程式所產生的 Plant Graphic 電廠流程圖檔案
- ListCreator (Coral)程式所產生的 List 檔案

(三) DIASYS NETMATION 控制系統的備份

由於電廠所有運轉控制程式及資料均位於 ORCA Server 中, 故需定期做適當的備份。其程序如下

1. 停止 EMS 中 ORCA Server 程序

以下步驟可停止 ORCA Server

- 從 Start/Control Panel/Services 中選 Orcastart,選 stop/yes
- ◆ 從 Task Manager/Processes 中確認 Orcasvr.exe 是否結 束消失
- 若 Orcasvr.exe 仍存在,執行 Endprocess/yes
- 2. 確定備份所在之目錄檔名
 - 一般是以日期時間為目錄檔名,例如 Date&Time 2002-11-2 19:30 存檔如下 D:\Backup\ProjectName\021102_1930
- 3. 儲存 Dump File
 - 執行 start/program/Oracle Enterprise Manager/Enterprise
 Manager
 - 輸入名稱: system, 密碼: manager, Service:Orca000*、(*根據 Service Name 之不同而變)
 - Data Manager 被啟動,選 Database 並按右鍵
 - 選 Related tools\Oracle data manager

- 輸入名稱: system, 密碼: manager, Service:Orca000*、(*根據 Service Name 之不同而變)
- Oracle data manager 啟動後,選擇 Users/Dolphin 按右鍵
- 選擇 Export
- 啟動 Export Wizard 後,選 Browse,輸入目錄檔名,例 如 D:\Backup\ProjectName\021102_1930.dmp
- 經過 3~5 分鐘後,顯示"Export terminated successfully without warnings"表示 Dump File 已經做好,關閉所有 視窗
- 4. 將資料目錄 C:\diasys\data\Projectname\Ems\Orcafiles 中 所有目錄檔案拷貝至備份之目錄中

除了上述 ORCA Files 及 Dump File 之備份外,每月應對 ORCA Server 之硬碟做完整備份,可使用 Power Quest Drive Image4.0 程式備份整個硬碟。

三、結 語

- (一)、南四機複循環機組為本公司第一部單軸式複循環機組,由於三菱重工有設備完善的模擬器可供實習,以達理論與實際的驗證,所以出國受訓練實在是受益非淺。
- (二)、吾人因有參與 Siemens 南一至三號機試運轉經驗,所以學習過程更是事半功倍。
- (三) 南四機控制系統 DIASYS NETMATION 除了 MPS(multiple Process Station)外,其餘 EMS(Engineering Maintenance Station)、OPS(Operation Station)、ACS(Accessory Station)等工作站都是架構於 PC 硬體,以 Microsoft Windows NT4.0 為平台之個人電腦。由於 PC 硬體及軟體之汰舊換新實在太快,所以吾人除了學習目前之各項運轉及電腦技術外,更需隨時吸收新知,以利各項設備之維護及更新,使機組能永續運轉。