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Background:

Neural degeneration is the cause of debilitating visual impairment
associated with prevalent ocular diseases, such as retinitis pigmentosa
(RP), age-related macular degeneration (ARMD), retinal detachment and
glaucoma. Retina is a complex, highly differentiated, image-sensing and
image-processing nerve structure. In human, the repair of a diseased
retina was believed to be impossible because the postembryonic retinal
neurogenesis was rare, if any. Transplantation of retinal pigment
epithelium, iris pigment cells and even a whole layer of retina tissue have
been tested to restore a functional vision in animals and human but all
failed [1-4]. Attempts to repopulate the retina with grafted neurons have
also been unsuccessful because donor cells prefer not to integrate with
those of the host [5]. Gene therapy with growth factors has not been
demonstrated to be able to effectively rescue the retina and the intraocular
inflammatory reactions caused by virus vectors were concerned, because

it could cause further damages of retina and deteriorate the visual defects



[6].

The recent identification and characterization of neural progenitors
with stem cell properties has open new avenues that may be useful for
treating functional impairments caused by the death of specific neural cell
populations [7,8]. Tropepe et al. have reported that adult mammalian
retinal stem cells are localized to the pigmented ciliary margin and not to
the central and peripheral retinal pigmented epithelium [9]. Cultured
neural stem cells may be transplanted to repopulate degenerating retina
by differentiating into photoreceptors (cell-replacement therapy) [10,11].
Cultured neural stem cells can also be genetically engineered to
synthesize and secrete neuroprotective factors and can be used to rescue
degenerating photoreceptors and reconstruct [12,13]. In addition to
promoting survival, the genetically modified cells can differentiate into
photoreceptors and reconstruct the degenerating retina (Ex vivo gene
therapy).

Although several studies support the therapeutic application of
neural stem cells, there are some problems to the practical and successful
use of neural stem cells [14]. First is the issue of availability of neural
stem cells in sufficient quantity for therapeutic purposes. Second, it is not
understood whether the extended exposure to the mitogens would lead to
genetic éhanges of neural stem cells. Third, although there is evidence
that transplanted cells can differentiate into site’-speciﬁc cells, details
regarding the proportions of grafted cells that remain undifferentiated or
that differentiate into some other cell types remain incomplete. Lastly,
there are ethical concerns associated with stem cells derived from the

embryonic tissue.



For more practical and successful use of neural stem cells in
rescuing degenerating retina, further work is necessary to identify the
optimal conditions for the maintenance, storage and differentiation of

neural stem cells into desirable cell types.

Methods:

(I)Newborn Sprague-Dawley rats were sacrificed and their
dissociated cells obtained from brain cortex, neural retina and
pigmented ciliary margin of eyes were cultured independently in
serum-free media with epidermal growth factor (EGF) and basic
fibroblast growth factor (bFGF). Neurospheres formed were not
passaged.

(2)Dissociated cells from pigmented ciliary margin of adult human
eyes were cultured in the same way. Immunostaining of
differentiated cells was performed to demonstrate the presence of

markers for different differentiated retinal cells.

Primary results:

(1) With our regimen, neurospheres did developed from both brain
cortex and pigmented ciliary margin of newborn rats within seven
days (Fig. 1). In addition, some morphological differentiation also
existed (Fig. 1). However, neurosphere w?s not found in neural
retinal culture of rats. The retinal stem cells are located in the
pigmented ciliary margin, which is compatible with other studies.

(2) The growth rate of retinal stem cells was slower than that of

cortical stem cell. Without passage and supplement of growth



factors, the numbers of neurospheres in cultures of retinal stem
cells started to diminish gradually after about 6 weeks and
neurospheres almost disappeared after 8 weeks.

(3)Neurospheres may form in adult human eyes (Fig. 2) and survived
more than 6 months. Immunostaining showed the markers of

different differentiated retinal cells (Fig 3).

Future work:

(1) Find out the optimal condition to maintain and expand the
population of retinal stem cells. Such as co-culture with RPE cell,
addition of activator of cAMP, cGMP and NO.... etc.

(2) Transfect the retinal stem cells with adeno-associated virus
carrying the gene of green fluoresxein protein to label the retinal
stem cells that would be transplanted into injured retina. It is
easier to observe the differentiation and growth pattern of the
transplanted retinal stem cells if they were labeled.

(3) Transfect the retinal stem cells with adeno-associated virus
carrying the gene of survival factors such as bcl2 (an antiapoptotic
factor) for ex vivo gene therapy.

(49) Set up an animal model of retinal neural degeneration by
transient retinal ischemia induced by r?ising the intraocular
pressure, which can be considered comparable to an acute
glaucoma attack, a central retinal artery occlusion, or an ischemic
optic neuropathy. Transplant the genetically modified stem cells

into injured retina.
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