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Smaller size of reproductive
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Wang PH

Decreased viabhility of ovulated

oocytes

» Oocytes free of cumulus granulosa cells

: 36%
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» COC (cumulus-oocyte-complex) less

AR*'*:

condense and less intact
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Interleukin-6 differentially regulates androgen receptor
transactivation via PI3K-Akt, STAT3, and MAPK, three distinct
signal pathways in prostate cancer cells™

Lin Yang,' Liang Wang,' Hui-Kuan Lin, Pu-Yeh Kan, Shaozhen Xie, Meng-Yin Tsai,
Peng-Hui Wang, Yen-Ta Chen, and Chawnshang Chang”

George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center,
University of Rochester Medical Center, Rochester, NY 14642, USA

Received 10 March 2003

Abstract

The effects of IL-6 on prostate cancer cells are well documented yet remain controversial. Some reports suggested that IL-6 could
promote prostate cancer cell growth, while others showed that IL-6 could repress prostate cancer cell growth. Here, we systemically
examined various IL-6 signaling pathways in prostate cancer cells and found that IL-6 could go through at least three distinct
pathways to modulate the functions of androgen receptor (AR), a key transcriptional factor to control the prostate cancer growth.
Our results show that IL-6 can enhance AR transactivation via either the STAT3 or MAPK pathways. In contrast, IL-6 can
suppress AR transactivation via the PI3K-Akt pathway. Co-existence of these various signaling pathways may result in either
additive or conflicting effects on AR transactivation. Together, our results indicate that the balance of these various pathways may

then determine the overall effect of IL-6 on AR transactivation.

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: AR; Transactivation; IL-6; PI3K; MAPK; STAT3

Prostate cancer is the second most prevalent cancer in
males in the United States. There is evidence that IL-6
may play an important role in metastatic prostate can-
cer. It has been demonstrated that all of the commonly
used prostate cancer cell lines (PC-3, DU145, and
LNCaP) express receptors with a high affinity for IL-6
[1-4]. In addition, prostate cancer cell lines, PC-3 and
DUI145, have been demonstrated to secrete varying
amounts of IL-6, whereas the hormone dependent cell
line, LNCaP, does not secrete IL-6 [2-4]. Clinical data
show that serum IL-6 levels are elevated in men with
hormone-refractory prostate cancer and that these high

* Abbreviations: AR, androgen receptor; PI3K, phosphatidylinosi-
tol 3(OH)-kinase; IL6, interleukin 6; wtAR, wild-type AR; DHT, Sa-
dihydrotestosterone; MMTV, mouse mammary tumor virus; PSA,
prostate specific antigen; luc, luciferase.

* Corresponding author. Fax: 1-585-756-4133.

E-mail address.: chang@URMC.rochester.edu (C. Chang).

! Authors contributed equally to this work.

serum IL-6 levels are accompanied by high levels of
serum prostate specific antigen (PSA) [5]. However,
proliferation studies of IL-6 in LNCaP cells have re-
sulted in contrasting results. Addition of exogenous IL-6
to the culture media of LNCaP cells showed that cell
growth was inhibited in a dose-dependent manner
[2,6,7). In contrast, other reports revealed cell growth
stimulation after treatment with IL-6 [3,8,9]. The rea-
sons for these differences have not been clarified to date,
but suggest that IL-6 may exert divergent effects in hu-
man prostate cancer.

The androgen receptor (AR) is a 110-kDa nuclear
protein that consists of several domains, including
transactivation, DNA binding, nuclear localization, di-
merization, and ligand binding domains [10-13]. The
AR is expressed in normal prostate tissue and prostate
cancers, and is a key transcription factor to control
prostate cell growth. Activation of the AR in prostate
cancer is being intensively investigated. After a ligand

0006-291X/03/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/80006-291X(03)00792-7
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binds to AR, the ligand-receptor complex translocates
into the nucleus and binds to specific androgen response
elements (AREs) [14,15]. Some evidence shows that the
AR could also be stimulated in the absence of its cog-
nate ligand by a number of nonsteroidal compounds,
such as various growth factors and protein kinase
pathways [16,17].

Recent studies revealed that IL-6 could activate AR
transactivation in an androgen-independent manner in
LNCaP cells [18-20]. The PI3K pathway has been re-
ported to be a major contributor in the signaling of IL-
6, however, the role of PI3K in the activation of AR
by IL-6 is controversial. Some studies suggested that
PI3K may play a role in the activation of AR by IL-6,
but another report showed that IL-6-mediated AR
activation was not dependent on the PI3K pathway
[18,21-24]. Moreover, although IL-6 is able to activate
AR transactivation in an androgen-independent man-
ner in LNCaP cells, IL-6 alone did not induce PSA
expression and mouse mammary tumor virus (MMTYV)
promoter activity in PC-3 and DUI145, in which AR
was transiently expressed [18]. These results suggest
that IL-6 may have distinct pathways in various
prostate cancer cells. Accordingly, in the current re-
port, we explored the availability of various IL-6 sig-
naling pathways in various prostate cancer cells and
compared what pathway is dominant in these various
cell lines.

Materials and methods

Materials. pPCDNA3-cAkt (a constitutively active Akt with a de-
letion at amino acids 4 129 replaced with a consensus myristylation
domain) and pCDNA3-dAkt (a kinase deficient mutant, K179A) were
from Dr. Robert Freeman [25]. pSG513-STAT3 and pSG513-STAT38
(a dominant-negative STAT3 with a point mutation) were from Dr.
Rolf P. de Groot [26]. LY294002, U0126, and PD98059 were from
Calbiochem and DHT was from Sigma. pCMV-AR, pSGS-AR,
MMTV-luciferase (MMTV-luc) promoter, and a reporter containing 4
copies of ARE promoter-luciferase ((AREM-luc), pRL-SV40, and
pRL-TK have been previously described [11]. Phospho-p44/42 MAP
kinase (Thr202/Thr204) antibody and p44/42 MAP kinase antibody
were purchased from Cell Signaling Technology.

Cell culture and transfections. The human prostate cancer PC-3 and
DU145 cells were maintained in Dulbecco’s minimum essential me-
dium containing peaicillin (25 U/ml), streptomycin (25 pg/ml), and 10%
fetal calf serum (FCS). The human prostate cancer LNCaP cells were
maintained in RPMI-1640 with 10% FCS.

Luciferase reporter assays. The cells were plated at 8 x 10* on 24-
well plates and incubated with RPMI 1640 or Dulbecco’s modified
Eagle’s medium containing 10% FBS for 24 h. Transfection was per-
formed by SuperFect (Qiagen) according to the standard protocol. In
brief, the total amount of plasmid DNA was adjusted to 1 pg/well by
addition of control plasmid. After 3h transfection, the medium was
replaced with serum-free medium or 10% charcoal dextran treated
FBS and treated with DHT, IL-6, or inhibitors. The cells were washed
with PBS and harvested after 24 h. Cell lysates were prepared and used
for luciferase assay according to the manufacturer’s instructions
(Promega). The results were obtained from at least three sets of
transfection and presented as means + SD.

PI3K activity assay. PI3K activity was determined as previously
described [27]. Briefly, cells were washed twice with ice-cold PBS and
lysed in RIPA buffer. The lysates were centrifuged and the protein
content was determined. Five-hundred microgram aliquots from each
sample were immunoprecipitated with 40 ul aliquots of pre-conjugated,
monoclonal anti-phosphotyrosine (PY20) agarose beads (Santa Cruz,
CA) by incubating overnight at 4°C in 500 pl of immunoprecipitation
buffer (199mM NaCl, S0mM Tris HCl, pH 7.4, 6mM EDTA, and
2.5% Triton X-100). All subsequent steps were exactly as described
[27). Briefly, 30l aliquots from the kinase reaction assays were
separated on thin layer Silica Gel 60 chromatography plates (EM
Separations Technology), dried at room temperature, and autoradio-
graphed.

Western blot analysis. Protein samples were prepared by lysing cells
over ice in ice-cold RIPA buffer (50 mM Tris HC, pH 7.4, 1% NP-40,
0.1% SDS, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EGTA,
1mM PMSF, 1 pg/ml leupeptin, 1 ug/ml aprotinin, 1 pg/m!t pepstatin,
1mM Na;VO,, and 1 mM NaF). Cell lysates were centrifuged at
14,000g at 4°C for 15min. Protein content was determined using the
DC-protein assay kit (Bio-Rad Laboratories, Hercules, CA). Equal
amounts of protein (S0 ug) from cell lysates were denatured in sample
buffer, subjected to SDS PAGE on 4 20% gels (Novex/Invitrogen, San
Diego, CA), and transferred to nitrocellulose membranes. The blots
were probed with specific primary antibodies as recommended by the
suppliers. Appropriate HRP-conjugated secondary antibodies were
used (1:5000) and visualized by enhanced chemiluminescence (Bio-Rad
Laboratories, Hercules, CA).

Results

IL-6 differentially induces AR transactivation in various
prostate cancer cells

We first investigated the effect of IL-6 on AR tran-
scriptional activity in LNCaP cells by transient trans-
fection with the MMTV-luc reporter plasmid. The
region of the MMTYV promoter that contains the AREs
is required for androgen induction. As shown in Fig.
1A, IL-6 had minimal effect on MMTV-luc activity in
the absence of DHT in the LNCaP cells. We then
treated the LNCaP cells with a low concentration of
DHT (0.10M) and a maximum induction (45-fold) of
MMTV-luc reporter activity was obtained and addition
of IL-6 (50ng/ml) resulted in a 70-fold increase in
MMTV-reporter activity relative to the control. How-
ever, in contrast to the LNCaP cells, co-transfection of
MMTYV reporter and wild-type AR with 1nM concen-
tration of DHT and 50 ng/ml of IL-6 in DU145 and PC-
3 cells did not show the similar induction pattern as in
LNCaP cells. In contrast, a slight suppressive effect on
AR activity was observed (Figs. 1B and C), suggesting
that the IL-6 signal may differentially modulate AR
activity in various prostate cancer cells.

Synergistic increases in the induction of MMTYV promoter
activity by IL-6 with blocking of the PI3K pathway

The fact that AR target gene reporters were poorly
induced in PC-3 and DU145 cells upon stimulation by
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Fig. 1. [L-6 differentially modulated AR target gene in prostate cancer cell lines. (A) LNCaP cells were transiently transfected with MMTV-luc
(300 ng/well) for 24 h and then incubated with 0.1 nM DHT or vehicle for additional 24 h under serum-free condition. (B,C) DU145 and PC-3 cells
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experiments.

1L-6 led us to investigate the PI3K signaling in these two
prostate cancer cell lines. We first investigated the effects
of Ap85, the dominant-negative form of PI3K and P110,
the active form of PI3K. As shown in Figs. 2A and B,
addition of Ap85 enhanced AR transactivation in a
dose-dependent manner. In contrast, addition of P110
repressed AR transactivation in a dose-dependent
manner in DU145 cells. These data suggest that acti-
vation of PI3K pathway may result in the suppression of
AR transactivation. We then investigated the effect of
IL-6, the upstream regulator of PI3K, on the AR
transactivation. As shown in Fig. 2C, addition of 1 nM
DHT enhanced MMTV-chloramphenicol transferase
(CAT) reporter activity 5-fold. Addition of IL-6, from
10ng/ml to 100ng/ml, slightly reversed this DHT-in-
duced reporter activity (lanes 3, 4, and 5 vs lane 2).
Addition of LY294002, a selective PI3K inhibitor, fur-
ther enhanced DHT-induced reporter activity from 5-
fold to 14-fold (lane 2 vs 6). Simultaneous addition of
LY294002 and IL-6 synergistically enhanced reporter
activity from 5-fold to 23-28-fold, suggesting that under
blockade of PI3K condition, IL-6 may go through other
pathways to stimulate AR activity, probably via MAPK
signaling pathway, because MAPK inhibitor U0126
suppresses AR transactivation, which can further re-
press AR activity when the cells were treated with IL-6
(Fig. 2C, lanes 10-13). Together, results from Figs. 2A~
C suggest that the lack of induction effect of IL-6 on AR
transactivation may be due to enhancement of PI3K
activity. To further confirm this hypothesis, we also
assayed the PI3K activity upon addition of IL-6. As
shown in Fig. 2D, addition of IL-6 enhanced PI3K ac-
tivity in DU145 cells as well as PC-3 and LNCaP cells.
In conclusion, data from Fig. 2 suggest that the IL-

6 — PI3K signal pathway may play negative roles for the
AR transactivation.

The effects of IL-6 — PI3K — Akt signal pathway on AR
transactivation

As Akt is the downstream signal of IL-6 — PI3K,we
were interested to see its effect on AR transactivation.
As shown in Fig. 3A, addition of the constitutive-active
form of Akt (cAkt) suppresses DHT-induced MMTV-
luc reporter activity in PC-3 cells (lane 2 vs 3). In con-
trast, addition of dominant-negative form of Akt (dAkt)
further enhanced DHT-induced MMTV-luc reporter
activity (lane 2 vs 4). Similar results were also observed
when we replaced PC-3 cells with DU145 cells (Fig. 3B).
These data are consistent with Fig. 2 showing that IL-
6 —PI3K — Akt signal pathway can suppress AR
transactivation.

The effect of IL-6 — MAPK pathway on AR transacti-
vation

MAPK represents another major downstream path-
way to mediate IL-6 signal [19]. However, in contrast to
the PI3K-Akt pathway that suppresses AR transacti-
vation, our data show that addition of constitutive ac-
tive MEK1 (cMEK1) further enhanced DHT-induced
MMTV-luc reporter activity in PC-3 and DUI145 cells
(Fig. 3C, lane 2 vs 3; Fig. 3D, lane 2 vs 3). MAPK in-
hibitor U0126 exerted repression effect on DHT-induced
AR transactivation (Fig. 3D, lane 4) in DU145 cells.
Together, results from Figs. 3C and D suggest that
MAPK may mediate IL-6 signal on AR transactivation
in a positive manner.
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Fig. 2. Additive increases in the induction of MMTV promoter gene by IL-6 with blocking of the PI3K pathway. (A) Enhancement of AR
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Experimental procedures.

The effects of combining PI3K-Akt and MAPK on AR
transactivation

Fig. 3 suggests that PI3K-Akt and MAPK, which
are distinct downstream signals of IL-6, can play
opposite roles (suppression vs induction) on the AR
transactivation. We were interested in determining
their mutual influence on the AR transactivation. As
shown in Fig. 4A, addition of cMEKI1 alone further
enhanced DHT-induced MMTV-luc reporter activity
(lane 2 vs 4) and addition of cAkt then suppressed
the cMEK-enhanced MMTV-CAT reporter activity
(lane 4 vs lanes 6 and 8). Similar conclusions also
occurred showing that ¢cMEK! reversed the cAkt-re-
pressed AR transactivation in PC-3 cells (Fig. 4B).
The interactions between two IL-6 downstream sig-
nals, MEK! and cAkt, were further demonstrated

using Western blot to assay the MAPK phosphory-
lation status. As shown in Fig. 4C, MAPK was
phosphorylated upon stimulation of IL-6 (lane 2).
This IL-6-induced MAPK phosphorylation was sup-
pressed upon addition of U0126, the MEKT! inhibitor
(lane 3 vs 4). Interestingly, if we replaced U0126 with
1.Y294002, the inhibitor of cAkt, we found that the
phosphorylation of MAPK increased significantly
(lane 5 vs 6), suggesting that blocking of the IL-
6— PI3K — Akt pathway may be able to potentiate
the IL-6 - MAPK pathway.

IL-6 potentiates STAT3 effect on enhancement of AR
transactivation

The third major downstream signal of IL-6 is STAT3.
As shown in Fig. 5A, addition of STAT3 enhanced



466 L. Yang et al. | Biochemical and Biophysical Research Communications 305 (2003) 462 469

A B
10 20
o MMTV PC-3 IS MMTV DpUi4s T
2 3 T
3 75 1 RNER
g g
& 5 T & 104
S b=
= g T
- a T .
2 254 v 5 J
3 K
3 _—
2 ol & 0.
] 2 3 4 1 2 3 4
WIAR 1 1 l WtAR ' i | 1
OHT - - + + DHT - + + +
cAkt - - + - cAkt - +
dAkt - - - + dAkt - - - +
C D 28
125 z
2 MMTV PC-3 3 DUI4S
H Z
=10 <‘€) 20
b 5
2 15 ]
§ 75 ] &
= ‘5
g s S 104
£ 25 1 i 54
3 = &
=2 0
1 2 3 i 4
DHT - + + DHT - + + +
WIAR - + + wiAR + + + +
eMEK | - - + cMPK| - - + -
u0126 - - . +

Fig. 3. cAkt suppresses, but cMEK1 enhances AR activity. PC-3 (A) and DU145 cells (B) were transfected with 50ng pPCMV-AR, 150 ng MMTV-
luc, 2.5 ng pRL-8V40, 50 ng cAkt, or dAkt. Transfected cells were treated for 24 h with 10 ®* M DHT or ethanol as vehicle controls. PC-3 (C) and
DU 145 cells (D) were transfected with 50 ng pPCMV-AR, 150 ng MMTV-luc, 2.5 ng pRL-SV40, and 100 ng cMEK 1. Transfected cells were treated for
24h with 10 * M DHT or ethanol as vehicle controls. In DU145 cells (D, lane 4), 20 uM U0126 was added with the DHT. Duplicate samples were
analyzed for each data point.

A n B;v. Et) c
Z £ -
g g p-MAPK
2 g X
E i, MAPK.
2 P
z o z LR BB K 13 3 45 %
12338567 12343678910 IL-6 e e
WAR -+ o+ PR R e WIAR 4 + 4 4 b b4+ (30:ug/miy
PRT -+ -+ - 4 .+ DHT A R LY294002 .
MEKI - -+ b+ b4 4 CARE = - # b kb4 (20 uM) - T
u\ktA Msmn--A 10126 . .
(20 pM)

Fig. 4. cAkt and MAPK counteract with each other to modulate AR activity, and IL6 activates MAPK in DU14S cells. (A) PC-3 cells were
transfected with 50ng pSGS-AR, 150ng MMTV-luc, 100 ng cMEK]1, Sng pRL-TK, and doses of cAkt (50 and 150 ng). (B) PC-3 cells were
transfected with 50 ng pSGS-AR, 150 ng MMTV-luc, 100 ng cAkt, Sng pRL-TK, and doses of cMEK1 (50, 150, and 300 ng). Cells were treated for
24h with 10 * M DHT or ethanol as vehicle controls. Duplicate samples were analyzed for each data point. (C) DU14S5 cells were treated with 50 ng/
ml IL-6, 20 uM LY294002 or 20 uM UD126, or a combination as indicated for 30min. The phosphorylation status of MAPK was determined
by immunoblotting with phospho-p44/p42 MAPK monoclonal antibody (top). The loading control was carried out with anti-MAPK antibody
(bottom).



L. Yang et al. | Biochemical and Biophysical Research Communications 305 (2003) 462 469 467

>
o

(AREM-luc PC-3
T

=N

Relative Luciferase Activity
&) e

<

12 3 4 S 6 7 89

WwtAR  + + + o+ + 4+ + + +
DHT -+ + + + o+ +

STAT3 - - ++ - - - .

DN-STA13 - - - - ++ -+ - -+

-6 - - - - - - + o+ o+

=

(ARE)4-luc PC-3

-~
w

w

)
w

Relative Luciferase Activity

<

12 3 4 5 6 7 8 9

WIAR  + o+ o+ o+ o+ o+ o+ o+ o+
DHT - + o+ o+ o+ o+ o+ + o+
cAkt - - + - + o+ -+
MEKI1 - - -+ -+ + o+
STAT3 - - - + - ¥+ o+

Fig. 5. IL-6 potentiated STATS3 effect on enhancement of AR transactivation and the effects of the co-existence of 3 IL-6 downstream signal
pathways. (A) PC-3 cells were transfected with 50 ng pCMV-AR, 150 ng (ARE)4-luc, doses of STAT3 or DN-STATS3 (++, 50ng and +++, 150ng),
and 5ng pRL-TK. Transfected cells were treated for 24 h with 10 * M DHT, ethanol, or 50 ng/ml IL6. Duplicate samples were analyzed for each data
point. (B) PC-3 cells were transfected with 50ng pCMV-AR, 150ng (ARE)4-luc, 5ng pRL-TK, and 50ng of cAkt, cMEKI, and STATS3, or
combinations of them. Transfected cells were treated for 24 h with 10 °* M DHT, ethanol, or 50 ng/ml IL6. Duplicate samples were analyzed for each
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DHT-induced AR transactivation in a dose-dependent
manner and addition of dominant-negative STAT3
suppressed AR transactivation in PC-3 cells. Addition
of IL-6 alone had little effect on the AR transactivation.
Addition of IL-6 and STAT3, however, further poten-
tiates STAT-induced AR transactivation (lane 4 vs 8).
Together, results from Fig. 5A suggest that IL-6 can
enhance AR transactivation through the STAT3 sig-
naling pathway.

The effects of the co-existence of 3 IL-6 downstream
signal pathways

To study the potential mutual influences of the 3 IL-6
downstream signal pathways (PI3K-Akt, MAPK, and
STATS3) on AR transactivation, we cotransfected these 3
downstream mediators in different combinations in PC-
3 cells. As shown in Fig. 5B, addition of cAkt alone
suppressed DHT-induced AR transactivation (lane 3).
Addition of MEKI1 alone enhanced DHT-induced AR
transactivation (lane 4). Addition of STAT3 alone en-
hanced DHT-induced AR transactivation (lane S). Si-
multaneous addition of cAkt and MEKI1 (lane 6) or
cAkt and STAT3 (lane 7) results in the slight suppres-
sion of AR transactivation. In contrast, simultaneous
addition of MEKI1 and STAT3 results in further en-
hancement of AR transactivation (lane 8). Simultaneous
addition of cAkt, MEK1, and STAT3 resulted in the
slight enhancement of AR transactivation (lane 9). To-
gether, results from Fig. 5B suggest that IL-6 effects on

the AR transactivation may depend on the availability
of its three downstream mediators. '

Discussion

The role of cytokines in normal prostate biology and
prostate cancer is still an emerging area of investigation.
IL-6 is significantly elevated in many men with advanced
hormone-independent prostate cancer and elevated IL-6
levels may constitute an independent prognostic marker
for decreased survival [5]. Thus, it has been predicted
that IL-6 signaling plays an important role in androgen-
independent progression. IL-6 receptor is expressed in
both prostate cancer tissues and prostate cancer cell
lines, including the androgen-dependent prostate cell
line LNCaP and androgen-independent PC-3 and
DU145 cells [28,29]. Binding of IL-6 to its receptor re-
sults in activation of JAKs as well as their two major
downstream signaling pathways, MAPK and STATS3, in
LNCaP cells [8,18,19,29]. IL-6 can also activate the
PI3K pathway in LNCaP and PC-3 cells [21-24]. Some
reports observed that IL-6 is able to induce AR trans-
activation in an androgen-independent manner in
LNCaP cells, but not in PC-3 and DU145 cells
[18,19,30]. However, the mechanism of IL-6 induction of
AR transactivation in LNCaP cells still remains largely
unknown. To date, results revealed that the induction of
AR target gene reporter activity by IL-6 was promoter-
specific and cell type-specific. Some studies showed that
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Fig. 6. A hypothetical working model of signal transduction pathways
to AR activity upon stimulation by IL-6 in hormone-refractory pros-
tate cancer cell lines. The [L-6 signaling cascade induces up-regulation
of AR-regulated genes such as MMTV through the STAT3 and
MAPK pathways, but down-regulation of MMTYV through the PI3K-
Akt pathway.

IL-6 could activate the AR gene promoter resulting in
increased AR mRNA and protein level in LNCaP cells,
suggesting that IL-6 enhances androgen activity by up-
regulating the AR level [18]. However, other reports
observed that the whole cell levels of AR were not in-
creased by IL-6 [31].

The fact that AR target gene reporters were poorly
induced in PC-3 and DU145 cells upon stimulation by
IL-6 led us to investigate the discrepancies between
LNCaP, PC-3, and DU145 cells. The observation that
IL-6 was able to activate PI3K, STAT3, and MAPK
pathways in PC-3 or DU145 cells, suggested that these
three pathways may coordinate with each other to de-
termine the effect of IL-6 on AR transactivation and
prostate cancer growth. We found that IL-6 could en-
hance AR transactivation via the MAPK or STAT3
pathway. Alternatively, IL-6 could repress AR transac-
tivation via the PI3K pathway. We also observed that
the PI3K pathway could negatively influence the MAPK
and STAT3 pathways, and the PI3K pathway may be
more dominant compared to the MAPK and STAT3
pathways upon the stimulation by IL-6 in PC-3 or
DU145 cells (Fig. 6). In LNCaP cells, although PI3K
pathway is also an IL-6 signal mediator, it has been
shown to not be a major signal transduction pathway
for IL-6 effect on AR. However, we cannot rule out the
possibility that in addition to the availability of these
three signal transduction pathways, some mediators of
IL-6 to modulate its effect on AR activity are deficient or
different in PC-3 and DU145 cells. In conclusion, our
data suggest that IL-6 may use multiple pathways to
differentially regulate AR transactivation and/or AR-
mediated cell growth in prostate cancer cells.
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