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Table 1 Simplified gas blend used for experiments
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Figure 14 NOx conversion percentages as measured
by chemiluminescent NOx analyzer (CLA) and by
FTIR (FTIR, triangles), plotted against temperature.
Values in boxes are averaged over one tempeature
cycle.
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Belgoprocess

4MI/ kg

2500 [/ 350 /

CO
Soot
20010 1 49
/

Test Series 1 2 3 4 5 6 7 8 9

Textile 4.0 8 155 | 31.0 | 137 | 97 129 | 134 | 149

Plastic
Polypropylene 6.0 12 16.0 | 320 | 270 | 270 | 320 | 320 | 320
Pellets or film

PvC 0.7 14 14 2.8 2.8 2.8 2.8 2.8 2.8
Paper 3.0 6.0 3.3 6.5 130 | 13.0 6.5 6.5 6.5
Rubber 2.0 4.0 19 3.8 7.5 7.5 3.8 3.8 3.8
Concrete 0 0 202 | 374 0 0 0 0 0

Drum weight 20 20 20 20 20 20 20 20 20




Total organicload | 157 | 314 | 387 | 76.1 | 640 | 60.0 | 580 | 585 | 60.0

Total weight 357 | 514 | 789 | 1335 | 840 | 8.0 | 780 | 785 | 80.0

1) CO
CO CO

2)

3)

200 04 CO
Co
2001
2002 4
150
2003

2. AMEC Earth and Environmental
"Batch Vitrification Treatment of Chlorinated
Organic Wastes* GeoMdt

(Vitrification Process) Dioxins
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Furans PCBs (
33%) GeoMdt
Deep Subsurface < Electrode
[n-Situ Treatment Disposable or
Re-usable —»
Hood (ontainer
Electrode Above-Ground
Batch Treatment
Mell
Subsurface Planar In-Container Vitrification
Fig. 1. Diagram showing primary GeoMelt treatment configurations.
GeoMdt
GeoMdt
GeoMdt
6
GeoMdt HCB HCBD
HCE DRE 98.09-
99.99% DRE 99.9999%




Of-Gas Treatment System . Thermal Oxidizer

GeoMdt 6

GeoM €t

Organo-chlorine Melt Destruction | - Overall Destruction and
Efficiency (DE) | Removal Efficiency (DRE)
Hexachlorobenzene (HCB) 99.52-99.13% >99.9999°%*
Hexachlorobutadiene (HCBD) |  98.09-99.65% >99.9999%*
Hexachloroethane (HCE) 99.78-99.99% >99.9999%*

* Species not detected in the treated off-gases at the stack
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Europlasma Pyrogenisis

(NETEC) CEA



Europlasma 26
5KW  5MW
1,000-1,500 25KW

Pyrogenisis

164 /

24

Plasma-fired Eductor

Phoenix Solutions

2,300



3

2002 SAE

COo, HO
(NO,)

Acetadehyde)

ZWILAG

21

NO NO,

NO, H,C N,

y

( Formaldehyde

4~30 L/min

(70~80%)

25



4 ZWILAG
5 GeoMdt
99.9999%

6 Phoenix Solutions

26

Dioxins

Furans

Retech

PCBs
(DRE )

2300



(SAE 2002
IT3

2 Phoeni x Solutions

2,300

Pho&milxwti ons

3 (Pyrolysis & Gadification)

70-80%

27



92

SOFC

28



( )
1. SAE Fuels & Lubricants Conference Papers 1995-2001

2. Peter Eastwood, “Critica Topics in Exhaust Gas Aftertreatment”,
Published by Research Studies Press Ltd., Dist. By SAE B-825,
2000.

3.“Generd Emissions and Gasoline Emission Control Systems”, from
SAE 2001 International Fall Fuels & Lubricants Meetings, SAE SP-
1644, 2001.

4.“ Diesel Emissions Control Systems”, from SAE 2001 Internaional
Fall Fuels & Lubricants Meeting, SAE SP-1641, 2001.

5.“ Two-Stroke Engines; Technology and Emissions”’, SAE PT-66, 1998.



2002 IT3

THERMAL PLASMA VITRIFICATION OF VARIOUSLLRW SURROGATES

J.P. Chu, K. S. Chen
Inst. of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan,
R.O.C.

C.C.Tzeng,Y.Y.Kuoand Y. J Yu
Physics Division, Institute of Nuclear Energy Research, Lung-Tan, Taiwan, R.O.C.

T. W. Cheng
Dept. of Mat. & Minera Resources Eng., National Taipei Univ. of Tech., Taipel, Taiwan,
R.O.C.

ABSTRACT

Vitrified dlag of various low-level radioactive waste (LLRW) surrogates have
been characterized. Waste surrogates including HEPA, contaminated soil, and used
thermal lagging materials erlite and rock wool) have been treated using a thermal
plasma heating source. Slag with large volume/weight reductions have been obtained,
with Vickers hardness Hv) ranging between 500 and 650. The hardness appears to
increase with the slag density. Numerous metal-bearing dispersed particles embedded in
the dlag matrix are observed, confirming the presence of mixing state during the
vitrification. Except for HEPA samples, the vitrified slag consists of mostly amorphous
state of SiIO2, which in turn dissolves other minor constituents from waste feeds. Thus,
perlite and soil are likely the glass-forming materials. In order to form a glassy structure,
the amount of HEPA should be less than 33% of the feed in weight.

INTRODUCTION

Nuclear power plants generate thousand tons of low-level radioactive wastes
(LLRWS) annually in Taiwan. Conventional incineration and compaction techniques are
being used to treat some of LLRWS. Y et, non-combustible and cement-solidified LLRWSs
need further treatments in order to dispose properly. It has been shown that the vitrified
form is one of preferred types for treating hazardous and radioactive wastes [1-14]. For
vitrification, our study used the plasma as a heating source which treated wastes
containing metals and/or organic at temperatures in a range of 1400 to 1600 a . Meta-
bearing solids were melted by the process, organic contaminants were thermally
destroyed. The molten material formed a hard, glass-like, leach-resistant monolithic mass
after cooling, which could then be disposed accordingly without any further treatments.
In this study, the Taiwan first plasma system built at Institute of Nuclear Energy
Research (INER) exclusively for the treatment of hazardous/radioactive wastes was used.
The study was directed toward characterization of dag generated from plasma
vitrification treatment, in order to establish a better understanding of the feasibility of the
plasma system in treating various LLRW surrogates. Surrogates selected were
combustible/non-combustible such as HEPA, spent resin, contaminated soil and used
thermal lagging materials (perlite, rock wool). Post-treatment slag characterizations
included scanning electron microscopy (SEM) for  microstructure/morphology



observation, X-ray energy dispersive spectroscopy (EDS) for elemental microanalysis, X-
ray diffractometry (XRD) for crystallography determination, and corrosivity evaluation
of the waste.

EXPERIMENTAL PROCEDURE
A 100 kW non-transferred arc-generated plasma torch is used as the heat source.
Temperatures at the hot spot of plasma could be in excess of 10,000 a . For ignition,
Argon is the plasma gas while nitrogen is used as the carrier gas during the treatment.
Surrogates are placed in a crucible located in the center of chamber so that a uniform
temperature distribution can be achieved. The vitrification treatment lasts 15 min at 1550
€. To dleviate thermal shock damages, the heating and cooling rates less than 10 /min
are maintained. Details of the INER plasma system and operation conditions are
described elsewhere (6, 7, 13, 14). Major constituents in the feeds along with the sample
designation are listed in Table |. For SEM and EDS examinations, a Hitachi S-4100
scanning electron microscope is used, while XRD is done with a Siemens D5000
diffractometer with monochromatic CuK  radiation. To evaluate the corrosivity toward
steel, the dag is also subjected to TCLP, followed by US EPA 1110 method. This method
exposes coupons of SAE 1022 steel to the liquid to be evaluated and, by measuring the
degree to which the coupon has been dissolved, determines the corrosivity of wastes. (15)
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RESULTS AND DISCUSSION

M acroscopic Examinations. Slag Density, Hardness, Volume and Weight Reductions
Table Il shows a list of volume and weight reduction of feeds, density and hardness

of dag. Generaly, the weight reduction was between 1 and 2 except those of feeds
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containing large amounts of spent resin. Feeds with large quantity of spent resin are
presumably incinerated completely during plasma treatment, resulting in increases in
both weight and volume reductions. The volume reduction also increases with the rock
wool content. Thus, when combining both rock wool and spent resin, the volume
reduction becomes relatively high. On the other hand, due to the lack of combustible
constituents in the soil feeds the slag yield low volume and weight reductions. Slag
densities are in the range of 2 to 3 g/cnt. There is no apparent correlation between slag
density and volume/weight reductions. Yet, the slag density appears to increase with
HEPA, rock wool and soil, whereas the reverse situation is observed for the spent resin.
Hardness of dlag are between Hv 500 and 650, showing an increasing trend with the dlag
density. That is the dag of HEPA, rock wool and soil have relatively high values of
hardness.
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Fig. 1 Mhotogmphs of plasma-treabsd prisloets from samples: (o) FIRSTA D and Chi TrPRLLL

The photographs in Fig. 1 show the typical plasma-treated products from samples
HRS131 and IrPR111. Both of the dag are vitrified, revealing a type of synthetic rock
with a dark-colored appearance, attached to the crucible. The dag structure of IrPR111
appears not as dense as that of HRS131, consistent with slag density evaluation results. In
this figure, the dag is rather uniform and no distinct, macroscopic segregation (such as
metal pellets) is observed in the vitrified product. Metal pellets are often found present at
the bottom of vitrified slag. Metal pellets tend to increase in quantity with HEPA content
in the feed. Metal pellets are formed because the feed stock contains some metallic
constituents, which are melted during the plasma treatment and aggregate to form pellets
after solidification. As a result of the difference in their specific gravities, vitrified slag



and metal pellets are separated, suggesting a possible way for the metal recovery (7).

Fig. 2 SEM pucmographs of plasima vitnfiad slig wiil X-ray micronalytical loe-scans ul the centar
of thapersei pariicles. (a) HRRS] LL Pe hng sean, by IeRS1THL Caling sean, i PR3 1L Fe and
{ili & linz scans.

Slag Examinations. SEM, EDS, and XRD Analyses

SEM examinations unvell numerous dispersed particles embedded in the slag matrix. The
chemical compositions of many particles have been analyzed with EDS, and indicate the
majority of particles examined are Ferich. Fig. 2(a) shows an example of SEM
micrograph taken from HRS111 slag with a line scan of Fe element at the bottom of the
micrograph confirms this particle is enriched with Fe. In addition to Fe, Cais aso found
in the particles, as shown in Fig. 2(b) taken from IrPS111 slag. For feeds containing rock
wool and spent resin, particles enriched with Fe and S constituents are frequently
observed, as revealed in line-scan results of Fig. 2(c) and (d). These fine particles are
dispersed uniformly in the slag and are likely precipitated out from the slag during the
solidification. According to our previous study (7, 14), the formation of these second
phases appeared to be affected essentially by the feed composition. The metal
constituents are melted and solidified during plasma treatment becoming spherical phases.
As evidenced by second phases in Fig. 2, mixing state of the elements from waste feeds
within the vitrified slag has been achieved during the treatment, as a result of high-
temperature driven diffusion effects. These elements form alloys or compounds that are
not soluble or with a limited solubility with the solid slag at room temperature, resulting
in spheroids in the slag matrix. Spherical shape of Fe- and Ca-rich phases is attributed to
the reduction of surface free energy during solidification. Formation of these phases or
particles is presumably a result of reshuffling and the mixing processes that occur
between metals and molten dlag during the vitrification (7). This provides a clear
evidence of the mixing state of thermal vitrification achieved by the thermal plasma.




EDS has been conducted to analyze elemental compositions of slag. Table 1l isa
list of EDS resulted from plasma-treated products of LLRW surrogates. O, Si and Al are
major constituents in most slag samples examined. This suggests the sag samples are
determined as mostly SIO, and Al,O,. In particular, perlite and soil are likely the glass-
forming materials that are beneficial for the vitrification. The presence of SO, and Al,O,
is confirmed by the XRD result described subsequently. For the HRS group samples, Al
content increases with HEPA content whereas Ca increases with rock wool. High HEPA
content (such as HRS311) results in high Al content in slag and thus formation of Al,O,
as a major phase, as evidenced by XRD. For high soil contents, such as HRS113 and
IrPS113, S in the form of SO, is high in the dag. For the IrPR group dag, Cais high and
compound formations of Ca, Al and Sl with O are expected.
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For XRD analyses, bulk slag samples are pulverized to minimize segregation effects. The
results are shown in Fig. 3. Except for HEPA samples, most of slag samples examined in
this study are of the amorphous structure, further confirming the glassy slag of SO,. For
amorphous slag, some samples exhibit crystaline structures as minor phases. These
minor phases include Al,O, and CaAl,S0,, consistent with SEM results. While
observed in SEM, FeS-ike phases are not found in XRD patterns, suggesting the
minority of these phases. Thus, in general, the second phases observed congtitute as the
minor phases and the glassy dlag of SIO, till the major phase. For HEPA feeds to form a
glassy structure, HEPA content is limited to 33% of feed in weight. In our study on the
leachability evauation of these slag samples by the toxicity characteristic leaching
procedure (TCLP) (16), the result shows insignificant leachability characteristics for
metallic elements such as Fe, Ca, and Al. Therefore, insoluble metal-bearing second
phases are effectively encapsulated by the slag matrix from leaching ouit.
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A feasibility study on a 100kW- thermal plasma system at INER has been carried
out to examine the vitrification of various LLRW surrogates. LLRW surrogates selected
include HEPA, spent resin, contaminated soil and used thermal lagging materials (perlite
and rock wool). The wastes have been vitrified with satisfactory results of volume and
weight reduction. The dlag density tends to increases with HEPA, rock wool and soil
content in the feed. Except for HEPA-bearing samples, the amorphous vitrified slag is
mostly SIO2 and dissolves constituents from the waste feed. Metal-bearing second phases
embedded in the dag matrix are found and their presence provides an evidence of a
mixing state achieved by the plasma. For HEPA sample to form a glassy structure, HEPA
content is limited to 33% of feed in weight.
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