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Lot streaming is the process of splitting a given lot or job to alow the
overlapping of successive operations in multi-stage production systems,
thereby reducing the makespan of the corresponding schedule. Scheduling
problems for lot streaming have been discussed for a while. Most of the
researchers in this area concentrated on consistent sublot (transfer batch)
models. However, the makespan may increase under the constraint of
consistent sublots. Recently, variable sublot models have received a lot of
atentions. In this research, we develop a heurisic variable sublot
procedure (model). This procedure determines machines, on which
transfer sublot sizes are redllocated, and transfer sublot sizes for each
machine according to machine processing times in the flow shop. The
proposed heuristic procedure is tested and evaluated via smulation.
Several factors, such as number of sublots, number of machine, processing
time, and the ratio of (number of dominant machines / number of
machines), are considered in different lot streaming models (equal sublots,
consistent sublots, and variable sublots). The results show the variable
sublot model outperforms consistent sublot and equal sublot models.
When the number of sublots, number of machines, and processing time
increase, corresponding percentage of improvement for different lot
streaming models increases. In addition, the variable sublot model is more
sengitive to the ratio factor than consistent sublot and equal sublot models.
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Abstract

Lot streaming is the process of splitting a given lot or job to allow the overlapping of
successive operations in multi-stage production systems, thereby reducing the makespan of
the corresponding schedule. Scheduling problems for lot streaming have been discussed
for awhile. Most of the researchers in this area concentrated on consistent sublot (transfer
batch) models. However, the makespan may increase under the constraint of consistent
sublots. Recently, variable sublot models have received a lot of attentions [1, 11]. In this
research, we discuss the variable sublot model and then compare different lot streaming
models in a multi-stage flow shop. Several factors, such as number of sublots, number of
machine, processing time, and the ratio of (number of dominant machines / number of
machines), are considered in different lot streaming models (equal sublots, consistent
sublots, and variable sublots). The results show the variable sublot model outperforms
consistent sublot and equal sublot models. When the number of sublots, number of
machines, and processing time increase, corresponding percentage of improvement for
different lot streaming models increases. In addition, the variable sublot model is more
sensitive to the ratio factor than consistent sublot and equal sublot models.

1. Introduction

In the current competitive environment for manufacturing, greater and greater emphasis is being
placed on reducing lead times and lowering work-in-process (WIP) inventory levels, both for filling
orders for existing products and for bringing new products to market. Therefore, compressing
manufacturing lead times and lowering work-in-process inventory levels has given rise to new research
problems in planning and scheduling for batch production environment [ 11].

A technique known as lot streaming or lot splitting has received attention as a scheduling tool to help
reduce makespan (i.e., manufacturing lead time) in a batch production environment. Lot streaming is the
process of splitting a given lot or job to alow the overlapping of successive operations in multi-stage
production systems, thereby reducing the makespan of the corresponding schedule. Scheduling problems
for lot streaming have been discussed for awhile [1, 2, 3, 4, 5, 8, 9, 10, 11, 12]. Most of the researchers
in this area concentrated on consistent sublot models. However, the makespan may increase under the
constraint of consistent sublots. Recently, variable sublot models have received a lot of attentions.
Trietsch and Baker [11] proposed a variable sublot model for lot streaming that can deal with a three-
machine problem to minimize the makespan. Baker and Jia [1] compared different lot streaming models
such as equal sublots, consistent sublots, and variable sublots for a three-machine flow shop and found
the performance of variable sublots is better than others. However, the variable soblot model for a multi-
stage flow shop is rarely discussed. In this research, we will discuss the variable sublot model and then
compare different ot streaming models in a mult-stage flow shop.



2. TheVariable Sublot Model
2.1 Notation and Definitions

The following notation and definitions for this model are defined as follows:
Makespan Makespan;
M number of machines
N number of sublots

D Demand
i machine number 1£i £M;
j  sublot number 1E£JEN;

t, processing time per unit on machine i;
g quantityin sublot j from machinei tomachine(i +1) ;
§, start tine of sublot j on machine i;

r; thesizerangeof sublot (j - 1) frommachine (i +1) to machine (i+2) 1£i£M-21£jE£(N-1)

After the notation is defined, the formulation for this variable sublot model is developed as follows:

Minimize  Makespan= Sy, 1ty N oo (1)
e Mg 8
aq <aq £ aq, ' for2£i£(M-1),1£ j £(N-1), (2-1)
y=1 y=1 y=1
Z)J
S % S, atty a q<' V- a g2 —for3£| EM,LE JEN-1); e (2-2)
1 g
S,;%S, +t, q¥ FOr 1E JEN; oo 3)
S’N ST +ti_1' (2 O SETEM | oo (4)
3§, g% 10/ 0072 S I 8 (5)
sJ S .+t gy fOr2Ei EM, 2E JEN oo (6)
N :
aq’= 10 I S o0 Y O @)
=
q’30 fOrLE JEN, LETEM =1} oo (8)
S,%0 forlEIEM, 1EJEN ; (9)

Expression (1) is the objective function that minimizes makespan. Expression set (2-1) (2-2)

defines the size range of each sublot. Expression set (3) (4) constraint the start time of each sublot.

Expression set (5) (6) constraints the start time of each nachine. Expression (7) enforces the total

amount of sublot must be equal to the demand. Expression (8) represents each sublot must be greater

than or equal to zero. Expression (9) represents the start time for any sublot must be greater than or

equal to zero.

Thisisan NP problem. Computational complexity increases when number of machines or sublots

10



increases. Hence, it won’'t be feasible to find the solutions based on the model mentioned above. We use
a heuristic method proposed by [6, 7] which has been proved better than the optimal solution of
consistent sublot model in terms of makespan. The steps are as follows:
Step1 Initialization

. m- i for LEiEm;

@. g - pfor LEiEm;

®. |,= Ofor 1E1E£m-1;

4. mt= m;

5). f= 2

Step2 Identifying dominated machine

l.,+q . +q
if —t L gt "1 then set follows:

(o PP Y q; + 1y

@. o o g+l

2. Mem Mg, for T EICEMC-1

(3. O¢o Qg for T EICEMC-1

@. g L, for f EICEmC- 2

®. m= m+1;f -~ max{lf-2}
Step3 Loop and termination

If f =m(- 1,then execution step 4.

Otherwise, execution follows:

®. Let f-= f+1

(2. GOTOstep2

Step4 Calculating allocation ratio in each critical block

+q,
Gem et (0 g me-1

R| - |i¢
¢
Cic+ e

Step5 Calculating transfer batch sizesin each critical block
. +qQ
If R¢= e Gien 4 1, then execution follows:
ic * lie

(2). Calculating the first transfer batch size

1



X
CERP

2. Calculating the other transfer batch sizes
LRy for 2£ j£n

|..+
Else Rm:l(;—frl_l then

@. Calculating each transfer batch sizes

L'? = Bfor 1££En
n

J

3. Computational Results
For the purpose of comparing different lot streaming models (equal sublots, consistent sublots, and
variable sublots), we design several experiments to test. Each batch is assumed 100 units. Processing

time is assumed uniform distribution. The test factors for different lot streaming models are as follows

(Table 1):
Table 1 Levels of designed factors
Designed Factors Levels
Number of sublots 2,58
Number of machines 6, 8, 10
Processing time 1~5, 6~10, 1~10
The ratio of dominant machines to total machines 0%, 50%, 100%

We generate 81 (=3x3x3x3) test sets for each model. Each set contains 30 problems that are
randomly selected from the range of the corresponding processing time. For each test, we compute the
difference between the makespan obtained by the model and makespan without lot-splitting and
expressed it as a percentage of the latter. Table 2 shows the results for different test sets. We find the
improvement for three models is from 36% to 79%. The variable sublot model outperforms consistent

sublot and equal sublot models in terms of average improvement.

Table 2 Average improvement for three models



Number of sublots | Number of machines | Processingtime | Raio | Equa | ConSsSent | Variable
2s 6m 1-5 0% [ 0.365 0.380 0.380
50% | 0.360 0.368 0.410
100% | 0.375 0.381 0.430
6~10 0% |[0.398 0.402 0.402
50% [ 0.393 0.397 0.422
100% | 0.396 0.400 0.430
0% |(0.364 0.381 0.381
1~10 50% | 0.363 0.373 0.405
100% | 0.373 0.380 0.423
0% |0.401 0.407 0.407
8m 1~5 50% | 0.3%4 0.400 0.436
100% | 0.402 0.403 0.455
0% |(0.419 0.423 0.423
50% | 0.420 0.423 0.444
6~10 100% | 0.421 0.424 0.450
0% |[0.396 0.403 0.403
50% | 0.395 0.401 0.435
1~10
10m 1-5
100% | 0.401 0.405 0.453
0% |0.423 0.425 0.425
6~10 50% | 0.417 0.420 0.456
100% | 0.417 0417 0.470
0% |0.436 0.438 0.438
1~10 50% | 0.434 0.436 0.456
100% | 0.436 0.436 0.463
0% (0412 0417 0.417
5s 6m 50% | 0.412 0.414 0.452
1~5 100% | 0.421 0.425 0.467
0% |[0.577 0.596 0.596
50% | 0.595 0.610 0.642
6~10 100% | 0.594 0.615 0.657
0% | 0. 0.639 0.639
50% | 0.629 0.640 0.664
1~10 100% | 0.633 0.646 0.680
0% (0573 0.592 0.592
50% | 0.568 0.593 0.625
1~5 100% | 0.577 0.600 0.641
8m 0% |[0.642 0.651 0.651
50% | 0.633 0.646 0.687
100% | 0.646 0.663 0.711
6~10 0% |(0.673 0.677 0.677
50% | 0.670 0.678 0.702
100% | 0.672 0.686 0.715
1~10 0% |[0.632 0.648 0.648
50% | 0.628 0.643 0.678
100% | 0.645 0.659 0.701
0% |[0.678 0.681 0.681
10m 1~5 50% | 0.668 0.678 0.715
100% | 0.667 0.681 0.735
0% [ 0.695 0.699 0.699
50% | 0.696 0.702 0.724
6~10 100% | 0.696 0.707 0.736
0% | 0.664 0.673 0.673
50% | 0.655 0.665 0.702
1~10 100% | 0.678 0.691 0.730
0% |[0.648 0.669 0.669
8s 6m 1-5
6~10 50% | 0.647 0.663 0.685
100% | 0.656 0.679 0.710
0% |[0.687 0.698 0.698
50% | 0.689 0.701 0.723
1~10 100% | 0.695 0.710 0.737
0% |[0.617 0.648 0.
50% | 0.627 0.653 0.674
8m 1~5 100% | 0.644 0.666 0.697
0% |[0.708 0.718 0.718
50% | 0.682 0.701 0.728
6~10 100% | 0.702 0.725 0.7
0% |[0.735 0.741 0.741
50% | 0.732 0.742 0.766
100% | 0.736 0.751 0.777
1~10 0% |[0.675 0.697 0.697
50% | 0.681 0.701 0.725
100% | 0.701 0.720 0.752
10m 15 0% |(0.738 0.744 0.7:
50% | 0.731 0.743 0.771
100% | 0.729 0.748 0.789
6~10 0% |[0.763 0.766 0.766
50% | 0.760 0.768 0.789
100% | 0.761 0.775 0.801
0% |0.720 0.733 0.7:
1~10 50% | 0.724 0.738 0.766
100% | 0.741 0.757 0.790

When number of sublots increases, the percentage of improvement for different lot streaming
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models increases and relative improvement for different lot streaming models decreases (Table 3). For
evaluating the effectiveness of the variable sublot model, we calculate the difference between the
makespan obtained by the given model and the makespan obtained by the variable sublot model and
express it as a percentage of the latter. We find the average relative optimality increases when the
number of sublotsincreases (Table 4).

Table 3 Averageimprovement for three models under different numbers of sublots

2s 5s 8s
Equal sublots 0.402 0.641 0.701
Consistent sublots 0.407 0.654 0.717
Variable sublots 0.431 0.678 0.735

Table 4 Average relative suboptimality under different numbers of sublots

2s 5s 8s
Equal v.s Variable 0.052 0.117 0.134
Consistent v.sVariable 0.044 0.078 0.076

When number of machine increases, the percentage of improvement for different lot streaming
models increases and relative improvement for different lot streaming models decreases (Table 5). In
addition, we find the average relative optimality increases when the number of machines increases
(Table 6).

Table5 Averageimprovement for three models under different numbers of machines

6m 8m 10m
Equal sublots 0.543 0.587 0.614
Consistent sublots 0.559 0.598 0.621
Varable sublots 0.580 0.620 0.644

Table 6 Average relative suboptimality under different numbers of machines

6m 8m 10m
Equal v.s Variable 0.097 0.103 0.104
Consistent v.sVariable | 0.056 0.067 0.074
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When processing time increases, the percentage of improvement for different lot streaming models

increases. The range of processing time increases, the percentage of improvement for different lot

streaming models decreases (Table 7).

Table 7 Averageimprovement for three models under different processing times

1-5 6~10 1~10
Equal sublots 0.574 0.604 0.566
Consistent sublots 0.586 0.611 0.581
Varable sublots 0.612 0.628 0.604

When the ratio of (number of dominant machines/ number of machines) increases, the percentage
of improvement for the variable sublot model increases. However, the other models seem indifference
(Table 8). In addition, Table 9 shows when the ratio increases, the average relative suboptimality also

increases.

Table 8 Averageimprovement for three models under different ratios

0% 50% 100%
Equal sublots 0.580 0.578 0.586
Consistent sublots 0.591 0.589 0.598
Varable sublots 0.591 0.618 0.636

Table9 Averagerelative suboptimality under different ratios

0% 50% 100%
Equal v.s Variable 0.027 0.117 0.158
Consistent v.sVariable | 0.000 0.083 0.114

4, Conclusions

In this paper, the variable sublot model is discussed. After the experimental design is conducted,

results are asfollows:

1. Thevariable sublot model outperforms consistent sublot and equal sublot models.

2. If the number of sublots, number of machines, and processing time increase, the corresponding
percentage of improvement for different lot streaming models increases and relative
improvement for different lot streaming models decreases.

3. If the ratio of number of dominant machines/ number of machines increases, the percentage of
improvement for the variable lot streaming models increases. The other models seem

indifference. The variable sublot model is more sensitive to the ratio factor than the other
models.

Two related research directions are as follows:
1 Develop an algorithm for the optimal variable sublot model for asingle job in aflow shop.
2, Find the relationship between the ratio of (number of dominant machines/ number of machines)
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and the variabl e sublot model.
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